scholarly journals Microstructure and Stress-Rupture Property of Large-Scale Complex Nickel-Based Single Crystal Casting

2018 ◽  
Vol 31 (8) ◽  
pp. 887-896 ◽  
Author(s):  
Min Huang ◽  
Gong Zhang ◽  
Dong Wang ◽  
Jia-Sheng Dong ◽  
Li Wang ◽  
...  
2007 ◽  
Vol 546-549 ◽  
pp. 1443-1446 ◽  
Author(s):  
Zhi Gang Kong ◽  
Lei Ji ◽  
Shu Suo Li ◽  
Ya Fang Han ◽  
Hui Bin Xu

The effect of heat treatment on microstructures and stress rupture property of a Ni3Al base single crystal alloy DDIC6 was studied in the present investigate. The single crystal specimens were produced by screw selection crystal method. The heat treatment for the alloy was 1300°C/10h+1120°C/4h+870°C/32h and 1300°C/10h+870°C/32h.The microstructures were examined by SEM, TEM and X-ray EDS techniques. The stress rupture tests were carried out in air by constant load creep machines under 1100°C/130MPa with the specimens size of φ5×25 mm. The experimental results showed that the as-cast large size γ′ phases entirely dissolved after 1300°C/10h, and secondary fine γ′ phases precipitated by following aging at 1120°C and 870°C for certain periods of time. The stress rupture life under 1100°C/130MPa increased from 20~30hrs for as-cast condition to 60~100hrs for heat treatment condition. The improvement of the creep resistance of the alloy may attribute to the decrement of the elements segregation at dendrite and interdendritic areas, and the proper size and distribution of γ′ phases.


2021 ◽  
Vol 136 ◽  
pp. 107237
Author(s):  
Xinxin Liu ◽  
Taiwen Huang ◽  
Jiachen Zhang ◽  
Dong Wang ◽  
Jian Zhang ◽  
...  

2017 ◽  
Vol 898 ◽  
pp. 498-504
Author(s):  
Hui Fen Li ◽  
Li Jun Liu ◽  
Ming Xue ◽  
La Mei Cao

The microstructure of a third generation single crystal superalloy DD10 with 0°~15° grain boundary and stress rupture property at 980°C/280MPa and 1100°C/140MPa have been studied and compared in the present investigation. The results showed that the primary dendritic stems at either side of low angle boundary indicated angular differences as compared with structure of principal [001] crystal. After thermal treatment, the grain boundary changed from irregular chain structure of γ’ and γ to flat and thin γ layer. Under the condition of 980°C/280MPaand 1100°C/140MPa, stress rupture life of the DD10 alloy with 7° low angle boundary decreased little compared with [001] crystal. The rupture was non-intergranular fracture. The 9° low angle boundary did not have a remarkable effect on stress rupture property of the DD10 alloy.


2017 ◽  
Vol 898 ◽  
pp. 492-497
Author(s):  
Jing Yang Chen ◽  
Qing Li ◽  
Ming Jun Zhang ◽  
Xin Tang ◽  
Cheng Bo Xiao

The influence of W and Al on the solidus and liquidus temperatures, microstructure and stress-rupture property at 980 °C/250 MPa was investigated in three Re-free experimental Ni-based single crystal superalloys. The results indicated that the solidus temperature increased for 14.0 °C and 9.8 °C by adding 0.84 wt.% W only and adding 0.45 wt.% Al and 0.44 wt.% W to the base alloy, respectively. The γ′ morphology changed from nearly cuboidal in the base alloy to cuboidal by adding 0.45 wt.% Al and 0.44 wt.% W. The volume fraction of γ′ precipitates increased, while the γ channel width decreased after adding Al and W. The additions of Al and W improved the stress-rupture life at 980 °C/250 MPa because of higher γ′ volume fraction, narrower γ matrix channel and more complete rafting structure.


Sign in / Sign up

Export Citation Format

Share Document