Real-Time Autonomous Vehicle Localization Based on Particle and Unscented Kalman Filters

Author(s):  
Wael Farag
2007 ◽  
Vol 30 (5) ◽  
pp. 829-842 ◽  
Author(s):  
Bing‐Fei Wu ◽  
Chao‐Jung Chen ◽  
Hsin‐Han Chiang ◽  
Hsin‐Yuan Peng ◽  
Jau‐Woei Perng ◽  
...  

Author(s):  
Sina Milani ◽  
Hamid Khayyam ◽  
Hormoz Marzbani ◽  
William Melek ◽  
Nasser L. Azad ◽  
...  

Author(s):  
Robert D. Leary ◽  
Sean Brennan

Currently, there is a lack of low-cost, real-time solutions for accurate autonomous vehicle localization. The fusion of a precise a priori map and a forward-facing camera can provide an alternative low-cost method for achieving centimeter-level localization. This paper analyzes the position and orientation bounds, or region of attraction, with which a real-time vehicle pose estimator can localize using monocular vision and a lane marker map. A pose estimation algorithm minimizes the residual pixel-level error between the estimated and detected lane marker features via Gauss-Newton nonlinear least-squares. Simulations of typical road scenes were used as ground truth to ensure the pose estimator will converge to the true vehicle pose. A successful convergence was defined as a pose estimate that fell within 5 cm and 0.25 degrees of the true vehicle pose. The results show that the longitudinal vehicle state is weakly observable with the smallest region of attraction. Estimating the remaining five vehicle states gives repeatable convergence within the prescribed convergence bounds over a relatively large region of attraction, even for the simple lane detection methods used herein. A main contribution of this paper is to demonstrate a repeatable and verifiable method to assess and compare lane-based vehicle localization strategies.


2021 ◽  
Vol 11 (15) ◽  
pp. 6701
Author(s):  
Yuta Sueki ◽  
Yoshiyuki Noda

This paper discusses a real-time flow-rate estimation method for a tilting-ladle-type automatic pouring machine used in the casting industry. In most pouring machines, molten metal is poured into a mold by tilting the ladle. Precise pouring is required to improve productivity and ensure a safe pouring process. To achieve precise pouring, it is important to control the flow rate of the liquid outflow from the ladle. However, due to the high temperature of molten metal, directly measuring the flow rate to devise flow-rate feedback control is difficult. To solve this problem, specific flow-rate estimation methods have been developed. In the previous study by present authors, a simplified flow-rate estimation method was proposed, in which Kalman filters were decentralized to motor systems and the pouring process for implementing into the industrial controller of an automatic pouring machine used a complicatedly shaped ladle. The effectiveness of this flow rate estimation was verified in the experiment with the ideal condition. In the present study, the appropriateness of the real-time flow-rate estimation by decentralization of Kalman filters is verified by comparing it with two other types of existing real-time flow-rate estimations, i.e., time derivatives of the weight of the outflow liquid measured by the load cell and the liquid volume in the ladle measured by a visible camera. We especially confirmed the estimation errors of the candidate real-time flow-rate estimations in the experiments with the uncertainty of the model parameters. These flow-rate estimation methods were applied to a laboratory-type automatic pouring machine to verify their performance.


Sign in / Sign up

Export Citation Format

Share Document