scholarly journals Arbuscular mycorrhizal fungi improved plant growth and nutrient acquisition of desert ephemeral Plantago minuta under variable soil water conditions

2014 ◽  
Vol 7 (3) ◽  
pp. 414-420 ◽  
Author(s):  
ZhaoYong Shi ◽  
Bede Mickan ◽  
Gu Feng ◽  
YingLong Chen
Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 322
Author(s):  
Rui-Cheng Liu ◽  
Zhi-Yan Xiao ◽  
Abeer Hashem ◽  
Elsayed Fathi Abd_Allah ◽  
Yong-Jie Xu ◽  
...  

Camellia is a genus of evergreen shrubs or trees, such as C. japonica, C. sinensis, C. oleifera, etc. A group of beneficial soil microorganisms, arbuscular mycorrhizal fungi (AMF), inhabit the rhizosphere of these Camellia spp. A total of eight genera of Acaulospora, Entrophospora, Funneliformis, Gigaspora, Glomus, Pacispora, Scutellospora, and Sclerocystis were found to be associated with Camellia plants with Glomus and/or Acaulospora being most abundant. These mycorrhizal fungi can colonize the roots of Camellia spp. and thus form arbuscular mycorrhizal symbionts. AMF is an important partner of Camellia spp. in the field of physiological activities. Studies indicated that AMF inoculation has been shown to promote plant growth, improve nutrient acquisition and nutritional quality, and increase resistance to drought, salinity and heavy metal contamination in potted Camellia. This review thus provides a comprehensive overview of AMF species occurring in the rhizosphere of Camellia spp. and summarizes the variation in root AMF colonization rate as well as the environmental factors and soil nutrients affecting root colonization. The paper also reviews the effects of AMF on plant growth response, nutrient acquisition, food quality, and stress tolerance of Camellia spp.


Agriculture ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 370
Author(s):  
Murugesan Chandrasekaran

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts of higher plants which increase the growth and nutrient uptake of host plants. The primary objective was initiated based on analyzing the enormity of optimal effects upon AMF inoculation in a comparative bias between mycorrhizal and non-mycorrhizal plants stipulated on plant biomass and nutrient uptake. Consequently, in accomplishing the above-mentioned objective a vast literature was collected, analyzed, and evaluated to establish a weighted meta-analysis irrespective of AMF species, plant species, family and functional group, and experimental conditions in the context of beneficial effects of AMF. I found a significant increase in the shoot, root, and total biomass by 36.3%, 28.5%, and, 29.7%, respectively. Moreover, mycorrhizal plants significantly increased phosphorus, nitrogen, and potassium uptake by 36.3%, 22.1%, and 18.5%, respectively. Affirmatively upon cross-verification studies, plant growth parameters intensification was accredited to AMF (Rhizophagus fasciculatus followed by Funniliforme mosseae), plants (Triticum aestivum followed by Solanum lycopersicum), and plant functional groups (dicot, herbs, and perennial) were the additional vital important significant predictor variables of plant growth responses. Therefore, the meta-analysis concluded that the emancipated prominent root characteristics, increased morphological traits that eventually help the host plants for efficient phosphorus uptake, thereby enhancing plant biomass. The present analysis can be rationalized for any plant stress and assessment of any microbial agent that contributes to plant growth promotion.


1999 ◽  
Vol 34 (6) ◽  
pp. 1018-1024 ◽  
Author(s):  
Elizabeth Ying Chu

With the objective of verifying the response of Euterpe oleracea seedlings to seven arbuscular mycorrhizal fungi species, an experimental trial was carried out under greenhouse conditions. Seeds of E. oleracea were sown in carbonized rice husk. Germinating seeds were initially transferred to plastic cups, containing fumigated Reddish Yellow Quartz Sand and inoculated with arbuscular mycorrhizal fungi. Two months later, seedlings were transferred to 2 kg black plastic bags, containing the same soil without fumigation. Plant growth and mineral nutrients were evaluated nine months after mycorrhizal inoculation. Differential effects were observed among the species tested, with Scutellispora gilmorei being the most effective ones in promoting growth and nutrient content of E. oleracea seedlings. The increment resulted from inoculation with S. gilmorei were 92% in total plant height, 116% in stem diameter, 361% in dry matter production, 191% in N, 664% in P, 46% in K, 562% in Ca, 363% in Mg and 350% in Zn contents, comparing to uninoculated controls. Infected root length was positively correlated to nutrient content and plant growth. It was concluded that growth and nutrient uptake of E. oleracea seedlings could be significantly improved by inoculation of effective arbuscular mycorrhizal fungi.


2012 ◽  
Vol 14 (4) ◽  
pp. 692-699 ◽  
Author(s):  
M.C. Arango ◽  
M.F. Ruscitti ◽  
M.G. Ronco ◽  
J. Beltrano

This study evaluated the effects of inoculation with the arbuscular mycorrhizal fungi Glomus mosseae, Glomus intraradices A4 and Glomus intraradices B1 and two phosphorus levels (10 and 40 mg kg-1) on root colonization, plant growth, nutrient uptake and essential oil content in Mentha piperita L. The experiment was carried out in a greenhouse, in 4x2 factorial arrangement, in completely randomized design. At sixty days after transplanting, the mycorrhizal plants had significantly higher fresh matter, dry matter and leaf area compared to non-mycorrhizal plants. The inoculation increased P, K and Ca levels in the shoot which were higher under 40 mg P kg-1 of soil. Plants grown with 40 mg P kg-1 soil increased the essential oil yield per plant by about 40-50% compared to those cultivated with 10 mg P kg-1, regardless of the mycorrhizal treatment. Among the studied fungal species, inoculation with G. intraradices A4 and a high level of P significantly increased plant growth and essential oil yield, compared to the other studied mycorrhizal fungal species. In conclusion, inoculation of arbuscular mycorrhizal fungi into peppermint plants is a feasible alternative to increase the essential oil production and reduce the use of fertilizers required to obtain economic production of peppermint under phosphorus-deficient soil condition.


2008 ◽  
Vol 5 (3) ◽  
pp. 395-398
Author(s):  
Baghdad Science Journal

Arbuscular mycorrhizal fungi and sulphur foam added either at direct seeding or at transplanting decreased the effects of nematode (Meloidogyne javanica) on eggplant growth, and improved plant health. Experiments were conducted to study the possible interactions between the Mycorrhizal fungi (Glomus mossae and Gigaspora spp.) and sulphur foam to control M. javanica on eggplant at seed or seedling stage. Experiment at seed stage treated with Mycorrhiza or sulphur foam alone or together stimulated the growth and reduced Nematode infestation significantly. Treated plant at seedling stage increased plant growth and reduced the number of galls /gm of root system. The interaction between Mycorrhiza and sulpher foam treatments was not significant.


Sign in / Sign up

Export Citation Format

Share Document