scholarly journals Effects of different plantation types on soil properties after vegetation restoration in an alpine sandy land on the Tibetan Plateau, China

2017 ◽  
Vol 9 (2) ◽  
pp. 200-209 ◽  
Author(s):  
Qingxue Li ◽  
Zhiqing Jia ◽  
Tao Liu ◽  
Lili Feng ◽  
Lingxianzi He
2015 ◽  
Vol 61 (4) ◽  
pp. 195-203 ◽  
Author(s):  
Feida Sun ◽  
Wenye Chen ◽  
Lin Liu ◽  
Wei Liu ◽  
Yimin Cai ◽  
...  

2020 ◽  
Author(s):  
Yujie Niu ◽  
Huimin Zhu ◽  
Siwei Yang ◽  
Jianwei Zhou ◽  
Bin Chu ◽  
...  

<p>Soil cracking is an important feature of degraded terrestrial ecosystems, which cuts the closed and intact land, alters microtopography and also influences the dynamics of soil nutrients, water and heat, then further affect species distributions. Despite their importance, the patterns and causes of cracks related to overgrazing on alpine rangeland have rarely been reported previously, and the effects of cracks on soil properties and plant distributions are poorly understood. Therefore, we used a comprehensive cross-scale approach to investigate the distribution of crack-soil areas at the eastern Tibetan plateau (217 survey sites), then selected the grazing-induced parameter that was closely related to the cracks at a small scale, and quantified the effects of microtopography (raised areas and healed cracks) induced by cracking on the soil properties, and community composition at crack-mosaic patch from 2013-2018, then to evaluate the further roles of soil cracking on alpine rangelands. The results showed that cracks only formed in the alpine meadow after overstocking. The increased soil compaction under overgrazing was closely related to soil cracking. On crack patch scale, the healed cracks facilitated nutrient and water enrichment due to the increasing surface roughness, then improved the plant communities. To some extent, healed crack mosaics are good for the conservation of water and nutrients. We provide key and easy-to-measure indicators to prevent overgrazing and cracking: a residual biomass greater than 65 g/m<sup>2</sup> and a height greater than 6 cm, and the soil compaction should be lower than 1044.26 ± 188.88 kPa. We should pay more attention to crack phenomena to prevent severe degradation. Overgrazed alpine meadows should be treated in the early phase of cracking and it may be able to return to optimum conditions in healthy rangelands. Otherwise, soil cracking becomes the most critical turning point in the process of alpine rangeland severe degradation.</p>


Solid Earth ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 137-147 ◽  
Author(s):  
Wei Li ◽  
Howard E. Epstein ◽  
Zhongming Wen ◽  
Jie Zhao ◽  
Jingwei Jin ◽  
...  

Abstract. Climate change and human activities have caused a shift in vegetation composition and soil biogeochemical cycles of alpine wetlands on the Tibetan Plateau. The primary goal of this study was to test for associations between community-weighted mean (CWM) traits, functional diversity, and soil properties during wetland drying. We collected soil samples and investigated the aboveground vegetation in swamp, swamp meadow, and typical meadow environments. Four CWM trait values (specific leaf area is SLA, leaf dry matter content is LDMC, leaf area is LA, and mature plant height is MPH) for 42 common species were measured across the three habitats; three components of functional diversity (functional richness, functional evenness, and functional divergence) were also quantified at these sites. Our results showed that the drying of the wetland dramatically altered plant community and soil properties. There was a significant correlation between CWM of traits and soil properties, but not a significant correlation between functional diversity and soil properties. Our results further showed that CWM-LA, CWM-SLA, and CWM-LDMC had positive correlations with soil readily available nutrients (available nitrogen, AN; available phosphorus, AP), but negative correlations with total soil nutrients (soil organic carbon is SOC, total nitrogen is TN, and total phosphorus is TP). Our study demonstrated that simple, quantitative plant functional traits, but not functional diversity, are directly related to soil C and N properties, and they likely play an important role in plant–soil interactions. Our results also suggest that functional identity of species may be more important than functional diversity in influencing ecosystem processes during wetland drying.


2021 ◽  
Vol 11 (6) ◽  
pp. 2645-2659
Author(s):  
Lingxianzi He ◽  
Zhiqing Jia ◽  
Qingxue Li ◽  
Youyan Zhang ◽  
Rina Wu ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Ying Zheng ◽  
Ning Chen ◽  
Can-kun Zhang ◽  
Xiao-xue Dong ◽  
Chang-ming Zhao

Macropores are an important part of soil structure. However, in alpine regions, the effects of soil macropores on soil properties and vegetation growth are not clear. We used the X-ray computed tomography (CT) method to obtain 3D images and visualize the distribution and morphology of soil macropores. By combining principal component analysis (PCA) and stepwise regression methods, we studied the relationships between soil macropores and both soil properties and vegetation growth in three types of grassland [alpine degraded steppe (ADS), alpine typical steppe (ATS), and alpine meadow steppe (AMS)] on the Tibetan Plateau. More tubular and continuous macropores occurred in the soil profiles of the AMS and ATS than in that of the ADS. In addition, the AMS soil had the highest macropore number (925 ± 189), while the ADS soil had the lowest macropore number (537 ± 137). PCA and correlation analysis suggested that macroporosity (MP) has significant positive correlations with the contents of soil organic matter, total nitrogen (TN), available phosphorus (AP) and total phosphorus (TP) (p < 0.05). The two parameters with the greatest influence on aboveground and belowground biomass were the shape factor (p < 0.05) and MP (p < 0.05), respectively. However, there was no significant correlation between plant diversity and soil macropores. We conclude that the irregularity of soil macropores restricts the growth space of roots and causes plants to sacrifice the accumulation of aboveground biomass for that of roots to find suitable sites for nutrient and water absorption.


Sign in / Sign up

Export Citation Format

Share Document