Spatiotemporal changes in water, land use, and ecosystem services in Central Asia considering climate changes and human activities

Author(s):  
Yang Yu ◽  
Xi Chen ◽  
Ireneusz Malik ◽  
Malgorzata Wistuba ◽  
Yiguo Cao ◽  
...  
2017 ◽  
Vol 236 ◽  
pp. 221-233 ◽  
Author(s):  
Jose L. Rolando ◽  
Cecilia Turin ◽  
David A. Ramírez ◽  
Victor Mares ◽  
Jorge Monerris ◽  
...  

2019 ◽  
Vol 685 ◽  
pp. 248-258 ◽  
Author(s):  
Paula Ferreira ◽  
Arnout van Soesbergen ◽  
Mark Mulligan ◽  
Marcos Freitas ◽  
Mariana M. Vale

2020 ◽  
Author(s):  
Laurent Marquer ◽  
Andrea Seim ◽  
Anne Dallmeyer ◽  

<p>Quantifying the long-term trend of climate versus land use influence on vulnerable ecosystems is of great importance to identify the threats of landscape modifications on biodiversity and ecosystem services, and therefore on societies. The evaluation of the resilience of ecosystems is particularly important considering the ongoing climate change.</p><p>As ecosystems in arid Central Asia are mainly influenced by climate and physical geography and most species are growing near their physiological limit, the predicted increased aridity for this region likely increases the threat on the ecosystems in this region.</p><p>Pollen are the main proxy to explore changes in vegetation at different spatial (local to subcontinental) and temporal (decades to millennia) scales. To quantify human- and climate-induced changes in vegetation, past land-cover (pollen-based estimates), land use (human deforestation scenarios and human population size) and climate (variables derived from climate models) data can be combined, as it has been done in Europe (e.g. Marquer et al., 2017).</p><p>This study aims at quantifying the effect of past climate changes on vegetation in Central Asia over the past millennia at century time scale. For this purpose, we use 49 pollen data from sedimentary records (lakes and mires) which were transformed into vegetation composition and diversity indices. Pollen data as point estimates and spatial grids of past vegetation are combined with available annually resolved gridded summer temperature and precipitation estimates inferred from tree-ring chronologies in this region. The reconstructed climate and vegetation trends are compared to different transient Earth System model simulations with the help of the biome-model BIOME4 (c.f. Dallmeyer et al., 2017). Statistical analyses have been performed to compare all data.</p><p>We found clear spatial pattern in the plant distribution with i) a large abundance of coniferous trees in northernmost areas and to a lesser extend in the mountains (e.g. Tian Shan), ii) steppes in the lowlands and at high plateaus, and iii) semi-deserts and steppes in the lowlands. The vegetation composition and diversity have significantly changed over the past millennia. Those changes are mainly related to modifications in composition and diversity of plant species in steppes and semi-deserts, of coniferous trees in the mountains, and changes in land use. Our results reveal that precipitation is the major driver of vegetation composition and diversity in Central Asia whereas temperature mainly explains the spatial variation, in particular during major climate events, e.g. the Little Ice Age and the Warm Medieval Period. Further studies are now in progress to quantify the relative (to climate) influence of land use (e.g. anthropogenic land-cover change; ALCC) in the region.</p><p>This study demonstrates the climate dependency of vegetation composition and diversity in Central Asia, especially during the major climate events over the last two millennia. This opens the discussion about the resilience of vulnerable ecosystems facing severe impacts of ongoing and predicted climate changes in arid Central Asia.      </p><p>Dallmeyer et al. (2017) Climate of the Past 13, 107-134. / Marquer et al. (2017) Quaternary Science Reviews 171, 20-37.</p>


2019 ◽  
Vol 403 ◽  
pp. 23-34 ◽  
Author(s):  
M. Gaglio ◽  
V. Aschonitis ◽  
L. Pieretti ◽  
L. Santos ◽  
E. Gissi ◽  
...  

2013 ◽  
Vol 5 (1) ◽  
pp. 116-127 ◽  
Author(s):  
Xi Chen ◽  
Jie Bai ◽  
Xiaoyu Li ◽  
Geping Luo ◽  
Junli Li ◽  
...  

2018 ◽  
Vol 10 (12) ◽  
pp. 4575 ◽  
Author(s):  
Yang Liu ◽  
Jun Bi ◽  
Jianshu Lv

Ecosystem services (ESs) in rapidly urbanizing agricultural basins are vulnerable to environmental changes. Adequately understanding the driving forces and the dynamics of ESs related to water quantity and quality can provide a basis for making sound management decisions on the development of basins. Here, we explored the impacts of future land use and climate changes on four ESs: nitrogen and phosphorous purification, water supply, and soil retention services in the Taihu Basin region of eastern China. Spatially explicit methods, a cellular automata-Markov (CA-Markov) model and the delta downscaling method were used to quantify the ESs, simulate land use changes, and project future climate changes, respectively. We built a business-as-usual land use scenario, representative concentration pathways (RCPs) scenarios for climate change, as well as a combined land use and climate change scenario to analyze the changes in the drivers and the responses of ESs. The results showed the following: (1) future land use changes would significantly enhance the nitrogen purification service while reducing the phosphorus purification service compared to other services; (2) climate change would have substantial effects on water supply and soil retention, but these impacts would vary with different RCPs scenarios during three future periods; and (3) the combined scenarios of both drivers would obviously influence all ESs and lead to a nitrogen purification service that was different from the other three services. Moreover, the policy implications of the results were discussed. The findings can help guide the creation of policies for land structure and patterns, climate change adaptation, and ecosystem-based management to promote the sustainable development of watersheds at the regional scale.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7665 ◽  
Author(s):  
Jiangyue Li ◽  
Hongxing Chen ◽  
Chi Zhang ◽  
Tao Pan

Acute farmland expansion and rapid urbanization in Central Asia have accelerated land use/land cover changes, which have substantial effects on ecosystem services. However, the spatiotemporal variations in ecosystem service values (ESVs) in Central Asia are not well understood. Here, based on land use products with 300-m resolution for the years 1995, 2005 and 2015 and transfer methodology, we predicted land use and land cover (LULC) for 2025 and 2035 using CA-Markov, assessed changes in ESVs in response to LULC dynamics, and explored the elasticity of the response of ESV to LULC changes. We found significant expansions of cropland (+22.10%) and urban areas (+322.40%) and shrinking of water bodies (−38.43%) and bare land (−9.42%) during 1995–2035. The combined value of ecosystem services of water bodies, cropland, and grassland accounted for over 90% of the total ESVs. Our study showed that cropland ecosystem services value increased by 93.45 billion US$ from 1995 to 2035, which was mainly caused by the expansion of cropland area. However, the area of water bodies decreased sharply during 1995–2035, causing a loss of 64.38 billion US$. Biodiversity, food production and water regulation were major ecosystem service functions, accounting for 80.52% of the total ESVs. Our results demonstrated that effective land-use policies should be made to control farmland expansion and protect water bodies, grassland and forestland for more sustainable ecosystem services.


2020 ◽  
Vol 64 (4) ◽  
pp. 40407-1-40407-13 ◽  
Author(s):  
Ran Pang ◽  
He Huang ◽  
Tri Dev Acharya

Abstract Yongding River is one of the five major river systems in Beijing. It is located to the west of Beijing. It has influenced culture along its basin. The river supports both rural and urban areas. Furthermore, it influences economic development, water conservation, and the natural environment. However, during the past few decades, due to the combined effect of increasing population and economic activities, a series of changes have led to problems such as the reduction in water volume and the exposure of the riverbed. In this study, remote sensing images were used to derive land cover maps and compare spatiotemporal changes during the past 40 years. As a result, the following data were found: forest changed least; cropland area increased to a large extent; bareland area was reduced by a maximum of 63%; surface water area in the study area was lower from 1989 to 1999 because of the excessive use of water in human activities, but it increased by 92% from 2010 to 2018 as awareness about protecting the environment arose; there was a small increase in the built-up area, but this was more planned. These results reveal that water conservancy construction, agroforestry activities, and increasing urbanization have a great impact on the surrounding environment of the Yongding River (Beijing section). This study discusses in detail how the current situation can be attributed to of human activities, policies, economic development, and ecological conservation Furthermore, it suggests improvement by strengthening the governance of the riverbed and the riverside. These results and discussion can be a reference and provide decision support for the management of southwest Beijing or similar river basins in peri-urban areas.


2020 ◽  
Vol 9 (2) ◽  
pp. 295-312
Author(s):  
Jang-Hwan Jo ◽  
Moon-Ki Choi ◽  
Oh Seok Kim ◽  
Kyeong-hak Lee ◽  
Chang-Bae Lee

Sign in / Sign up

Export Citation Format

Share Document