Numerical investigation on forming behavior of friction stir tailor welded blanks (FSTWBs) during single-point incremental forming (SPIF) process

Author(s):  
Shalin Prakashbhai Marathe ◽  
Harit Kishorchandra Raval
Author(s):  
Shalin Marathe ◽  
Harit Raval

Abstract The automobile, transportation and shipbuilding industries are aiming at fuel efficient products. In order to enhance the fuel efficiency, the overall weight of the product should be brought down. This requirement has increased the use of material like aluminium and its alloys. But, it is difficult to weld aluminium using conventional welding processes. This problem can be solved by inventions like friction stir welding (FSW) process. During fabrication of product, FSW joints are subjected to many different processes and forming is one of them. During conventional forming, the formability of the welded blanks is found to be lower than the formability of the parent blank involved in it. One of the major reasons for reduction in formability is the global deformation provided on the blank during forming process. In order to improve the formability of homogeneous blanks, Single Point Incremental Forming (SPIF) is found to be giving excellent results. So, in this work formability of the welded blanks is investigated during the SPIF process. Friction Stir Welding is used to fabricate the welded blanks using AA 6061 T6 as base material. Welded blanks are formed in to truncated cone through SPIF process. CNC milling machine is used as SPIF machine tool to perform the experimental work. In order to avoid direct contact between weld seam and forming tool, a dummy sheet was used between them. As responses forming limit curve (FLC), surface roughness, and thinning are investigated. It was found that use of dummy sheet leads to improve the surface finish of the formed blank. The formability of the blank was found less in comparison to the parent metal involved in it. Uneven distribution of mechanical properties in the welded blanks leads to decrease the formability of the welded blanks.


Author(s):  
Senthil Kumar Velukkudi Santhanam ◽  
Vigneshwaran Ganesan ◽  
Subramanian Pillappan Shanmuganatan

In the recent manufacturing trend and, in particular, in sheet metal forming, the requirement of customized production is still growing. Incremental forming is a special technique requiring no high capacity presses or set of dies, thus meeting the increasing demand for low volume production and rapid prototyping. The complex three dimensional parts of sheet metals are formed by the computer numerical control (CNC) movement of a simple generative hemispherical tool. In this paper, the single point incremental forming process is performed on friction stir processed AA 6063-O alloy. The process parameters for the experiment are taken based on L9 Orthogonal array. In this paper the maximum wall angle or the formability is investigated on a formed pyramid frusta. It is inferred that Friction stir process has improved the ductility of the aluminium alloy thus contributing to enhanced formability.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 198
Author(s):  
Valentin Oleksik ◽  
Dan Dobrota ◽  
Sever-Gabriel Racz ◽  
Gabriela Petruta Rusu ◽  
Mihai Octavian Popp ◽  
...  

The present paper aims to study the behaviour of Metal Active Gas (MAG) tailor welded blanks during the single point incremental forming process (SPIF) from an experimental point of view. The single point incremental forming process was chosen for manufacturing truncated cone and truncated pyramid shaped parts. The same material (S355) and the same thickness (0.9 mm) were selected for the joining of blank sheets because the main goal of the paper was to study the influence of the MAG welding process throughout the SPIF process. A Kuka robot, equipped with a force transducer and an optical measurement system were used for manufacturing and evaluating the parts by SPIF. The selected output data were major and minor strain, thickness reduction, forces and springback at the SPIF process. Another line test was performed to evaluate the formability in SPIF. The main conclusion of the paper is that during the SPIF process, fractures occur in one side welded blanks even at moderate wall angles, while in the case of double side welded blanks there is a decrease of formability but parts can still be produced at moderate angles (55 degrees) without any problems.


Sign in / Sign up

Export Citation Format

Share Document