Experimental investigation of blunt cone model at hypersonic Mach number 7.25

Author(s):  
Saiprakash Mani ◽  
C. Senthilkumar ◽  
G. Kadam Sunil ◽  
Singh Prakash Rampratap ◽  
V. Shanmugam ◽  
...  

AbstractExperiments were carried out in hypersonic shock tunnel in Defence Research and Directorate Laboratory at hypersonic Mach number of 7.25 using an 11.37° apex-angle blunt cone model. Heat flux measurement was carried out on cone model at different angles of attack with angle of rotation ϕ = 0° to 360° in steps of 45° with vacuum sputtered platinum thin film sensors. The measured experimental value of heat transfer data at stagnation point was compared with theoretical value estimated Fay and Riddell correlation. As angle of rotation was increased from ϕ = 0° to ϕ = 180°, the shock wave became closer to model surface due to high density ratio across the shock wave and consequently heat transfer rate became higher.

Author(s):  
Saiprakash Mani ◽  
C. Senthilkumar ◽  
G. Kadam Sunil ◽  
Singh Prakash Rampratap ◽  
V. Shanmugam ◽  
...  

Author(s):  
Michael Gritsch ◽  
Stefan Baldauf ◽  
Moritz Martiny ◽  
Achmed Schulz ◽  
Sigmar Wittig

The present paper reports on the use of the superposition approach in high density ratio film cooling flows. It arises from the linearity and homogeneity of the simplified boundary layer differential equations. However, it is widely assumed that the linearity does not hold for variable property flows. Therefore, theoretical considerations and numerical calculations will demonstrate the linearity of the heat transfer coefficient with the dimensionless coolant temperature θ as long as identical flow conditions are applied. This makes it necessary to perform at least two experiments at different θ but with the coolant to main flow temperature ratio kept unchanged. A comprehensive set of experiments is presented to demonstrate the capability of the superposition approach for determining heat transfer coefficients for different film cooling geometries. These comprise coolant injection from two dimensional tangential slots, single holes, and rows of cylindrical holes. Particularly, two dimensional local distributions of the heat transfer coefficient will be addressed.


2000 ◽  
Vol 123 (2) ◽  
pp. 219-232 ◽  
Author(s):  
Y.-L. Lin ◽  
T. I.-P. Shih ◽  
M. A. Stephens ◽  
M. K. Chyu

Computations were performed to study the three-dimensional flow and heat transfer in a U-shaped duct of square cross section under rotating and non-rotating conditions. The parameters investigated were two rotation numbers (0, 0.24) and smooth versus ribbed walls at a Reynolds number of 25,000, a density ratio of 0.13, and an inlet Mach number of 0.05. Results are presented for streamlines, velocity vector fields, and contours of Mach number, pressure, temperature, and Nusselt numbers. These results show how fluid flow in a U-duct evolves from a unidirectional one to one with convoluted secondary flows because of Coriolis force, centrifugal buoyancy, staggered inclined ribs, and a 180 deg bend. These results also show how the nature of the fluid flow affects surface heat transfer. The computations are based on the ensemble-averaged conservation equations of mass, momentum (compressible Navier-Stokes), and energy closed by the low Reynolds number SST turbulence model. Solutions were generated by a cell-centered finite-volume method that uses second-order flux-difference splitting and a diagonalized alternating-direction implicit scheme with local time stepping and V-cycle multigrid.


2019 ◽  
Vol 12 (2) ◽  
pp. 461-468
Author(s):  
M. Saiprakash ◽  
C. Senthil Kumar ◽  
G. K. Sunil ◽  
S. P. Rampratap ◽  
V. Shanmugam ◽  
...  

1948 ◽  
Vol 26a (1) ◽  
pp. 1-21 ◽  
Author(s):  
D. G. Samaras

Endothermic and exothermic processes in gas dynamic flows taking place in a very narrow zone may be considered as discontinuities. The variation of the static and total head density ratio, pressure ratio, and temperature ratio as well as the angle of deviation, area ratio, and exit normal Mach number have been found as functions of the entry normal Mach number and of heat addition. In addition to these, some other useful quantities such as the area ratio parameter, the difference of the square of velocities, and the normal velocity product have been evaluated. It was found that, in a discontinuity, heat can be added until the exit normal Mach number reaches unity (choking). Depending on the entry normal Mach number, only a limited amount of heat can be added at the discontinuity. An exothermic discontinuity behaves as an expansion when the entry normal Mach number is subsonic, and it is accompanied by a drop in static pressure, density, and total head pressure. An exothermic discontinuity behaves as a compression shock wave when the entry normal Mach number is supersonic, and it is accompanied by an increase in static pressure and density and a decrease in total head pressure. An endothermic discontinuity behaves always as a compression shock wave, and it is accompanied by an increase in static density, pressure, and total head pressure. It is hoped that the results and conclusions found may be useful in a better understanding of many nearly discontinuous phenomena such as flame fronts, condensation and evaporation fronts, and other similar problems.


Sign in / Sign up

Export Citation Format

Share Document