scholarly journals Correction to: Experimental investigation of blunt cone model at hypersonic Mach number 7.25

Author(s):  
Saiprakash Mani ◽  
C. Senthilkumar ◽  
G. Kadam Sunil ◽  
Singh Prakash Rampratap ◽  
V. Shanmugam ◽  
...  
Author(s):  
Saiprakash Mani ◽  
C. Senthilkumar ◽  
G. Kadam Sunil ◽  
Singh Prakash Rampratap ◽  
V. Shanmugam ◽  
...  

AbstractExperiments were carried out in hypersonic shock tunnel in Defence Research and Directorate Laboratory at hypersonic Mach number of 7.25 using an 11.37° apex-angle blunt cone model. Heat flux measurement was carried out on cone model at different angles of attack with angle of rotation ϕ = 0° to 360° in steps of 45° with vacuum sputtered platinum thin film sensors. The measured experimental value of heat transfer data at stagnation point was compared with theoretical value estimated Fay and Riddell correlation. As angle of rotation was increased from ϕ = 0° to ϕ = 180°, the shock wave became closer to model surface due to high density ratio across the shock wave and consequently heat transfer rate became higher.


Author(s):  
Wu Guochuan ◽  
Zhuang Biaonan ◽  
Guo Bingheng

24 double circular are tandem blade cascades of three different chord-ratios were investigated under different displacements in peripheral and axial direction. The inlet Mach number was 0.3. The Reynolds number based on blade chord was 2.7×105. The characteristics of the tandem blade cascades, such as the dependence of turning angle and coefficient of total pressure loss on incidence angle were obtained. The ranges of main geometrical parameters under optimal conditions were recommended.


2021 ◽  
Vol 932 ◽  
Author(s):  
Prateek Jaiswal ◽  
Yann Pasco ◽  
Gyuzel Yakhina ◽  
Stéphane Moreau

This paper presents an experimental investigation of aerofoil tones emitted by a controlled-diffusion aerofoil at low Mach number ( $0.05$ ), moderate Reynolds number based on the chord length ( $1.4 \times 10^{5}$ ) and moderate incidence ( $5^{\circ }$ angle of attack). Wall-pressure measurements have been performed along the suction side of the aerofoil to reveal the acoustic source mechanisms. In particular, a feedback loop is found to extend from the aerofoil trailing edge to the regions near the leading edge where the flow encounters a mean favourable pressure gradient, and consists of acoustic disturbances travelling upstream. Simultaneous wall-pressure, velocity and far-field acoustic measurements have been performed to identify the boundary-layer instability responsible for tonal noise generation. Causality correlation between far-field acoustic pressure and wall-normal velocity fluctuations has been performed, which reveals the presence of a Kelvin–Helmholtz-type modal shape within the velocity disturbance field. Tomographic particle image velocimetry measurements have been performed to understand the three-dimensional aspects of this flow instability. These measurements confirm the presence of large two-dimensional rollers that undergo three-dimensional breakdown just upstream of the trailing edge. Finally, modal decomposition of the flow has been carried out using proper orthogonal decomposition, which demonstrates that the normal modes are responsible for aerofoil tonal noise. The higher normal modes are found to undergo regular modulations in the spanwise direction. Based on the observed modal shape, an explanation of aerofoil tonal noise amplitude reduction is given, which has been previously reported in modular or serrated trailing-edge aerofoils.


1984 ◽  
Vol 8 (3) ◽  
pp. 126-132
Author(s):  
N.W.M. Ko

This paper describes an experimental investigation of a jet of Mach number 0.5 which is partially interrupted by an 180° sharp edge. Detailed Schlieren and pressure spectral measurements of the jet with the sharp edge located at different locations inside the jet have indicated the presence of the basic jet coherent structure, the axisymmetrical and azimuthal constituents and the resonances set up by the interaction of the jet flow and sharp edge. The resonances arc due not only to the interaction of the initial shear layer with the acoustic feedback from the basic coherent structure but also with the acoustic feedback from the wake vortices set up in the wake flow behind the sharp edge. For the former, dependence of the level of resonance on location of the sharp edge has also been found.


2001 ◽  
Vol 105 (1045) ◽  
pp. 119-124 ◽  
Author(s):  
N. Taborda ◽  
D. Bray ◽  
K. Knowles

AbstractAn experimental study was conducted to analyse the pressure distribution along the floor of a cavity, with and without the presence of an upstream tandem cavity, at a constant freestream Mach number of about 0-911. Measurements were made for single cavities and the results compared with those obtained in the presence of an upstream tandem cavity. This comparison was made over a wide range of geometries, covering open to closed classes of cavities with both identical and different dimensions for the two cavities. The effect of the spacing between the two cavities was also studied. The downstream cavity is shown to be significantly affected by the presence of an upstream cavity, with both the overall net static pressure and its gradient being affected, dependent upon the class of cavity geometry and spacing under consideration.


Sign in / Sign up

Export Citation Format

Share Document