Thermal error regression modeling of the real-time deformation coefficient of the moving shaft of a gantry milling machine

2020 ◽  
Vol 8 (1) ◽  
pp. 119-132
Author(s):  
Wen-Hua Ye ◽  
Yun-Xia Guo ◽  
Heng-Fei Zhou ◽  
Rui-Jun Liang ◽  
Wei-Fang Chen
Author(s):  
Aidong Meng ◽  
Sayed A. Nassar

A Digital Speckle Pattern Interferometry (DSPI) system is developed for the real-time measuring and monitoring the out-of-plane surface deformation around tightened threaded fasteners that are used to clamp bolted assemblies. Spatial phase shifting is employed to quantitatively determine the distribution of phase data by introducing a spatial carrier fringe pattern to the speckle interferogram. This is achieved by leading the object and reference beams to two separate apertures. The configuration is also suitable for collecting the real-time deformation during bolt tightening. The experimental DSPI system is set-up with optical components on a vibration-isolation table. A Matlab software is developed for the image acquisition and phase data calculation, which yields the out-of-plane surface deformation caused by the bolt preload. An aluminum joint is used with an M12 steel fastener. For miniature screw application, however, a plastic joint is used for collecting data.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Chuan He ◽  
Lianxiong Liu ◽  
Changhua Hu

In the process of the deformation monitoring for large-scale structure, the mobile vision method is often used. However, most of the existent researches rarely consider the real-time property and the variation of the intrinsic parameters. This paper proposes a real-time deformation monitoring method for the large-scale structure based on a relay camera. First, we achieve the real-time pose-position relationship by using the relay camera and the coded mark points whose coordinates are known. The real-time extrinsic parameters of the measuring camera are then solved according to the constraint relationship between the relay camera and the measuring camera. Second, the real-time intrinsic parameters of the measuring camera are calculated based on the real-time constraint relationship among the extrinsic parameters, the intrinsic parameters, and the fundamental matrix. Finally, the coordinates of the noncoded measured mark points, which are affixed to the surface of the structure, are achieved. Experimental results show that the accuracy of the proposed method is higher than 1.8 mm. Besides, the proposed method also possesses the real-time and automation property.


Author(s):  
Zhaoguang Wang ◽  
Georges Dumont

Virtual Reality technology has been widely applied in the background of industrial evaluation applications. However, a large majority of these applications are focusing on haptics-based assemblies which mainly deal with rigid-body dynamics. Here we concern the real-time haptic interaction with deformable mock-ups aiming at the industrial design evaluation of mechanical parts. The main challenge of this application is that a tradeoff between the deformation accuracy and the interaction performance has to be achieved. In this paper, we propose a two-stage method for a real-time deformation modelling by combining an off-line pre-computation phase and an on-line deformation interaction phase. The key contributions of this paper lie on two aspects. First, during off-line phase, we propose a mesh analysis method which allows us to pre-compute different deformation spaces by anticipating the evaluation scenarios. Moreover, a real-time switch among different deformation spaces is developed so that the on-line deformation computation can focus on degrees of freedom where necessary with respect to users’ interactions. Second, during on-line phase, we apply a division scheme to divide the deformation process into two separate modules which are implemented on different threads to ensure the haptic interaction performance. Experiments are carried out based on a prototype implementation concerning different models of growing complexity. The deformation accuracy and the real-time performance are discussed.


Author(s):  
Firas J. Hmood ◽  
Janka Wilbig ◽  
Dagmar Nicolaides ◽  
Andrea Zocca ◽  
Jens Günster

2019 ◽  
Author(s):  
Yongbo Wu ◽  
Ruiqing Niu ◽  
Zhen Lu

Abstract. Landslide Early warning systems has been widely used to avoid potential disaster. In this paper, a fast monitoring and real time precursor predication method is proposed to build the early warning systems for specific landslide. The fast monitoring network in this system uses ad-hoc technology to build rapid site monitoring network consist of Beidou terminals and fracture monitors. The real time precursor predication method based on the KF-FFT-SVM model is conducted to fulfil precursor early warning of in short time. The KF-FFT-SVM model working in this system is established through the analysis of the precursor slide character in deformation data got by the Beidou terminals. The deformation data is considered as the mechanical vibration of specific landslide and the KF-FFT-SVM model is trained to predicate the occurrence of landslide by the real time deformation data. This system not only improves the robustness of site monitoring, but also provides an effective early warning method for specific landslide. It is applied in Baige landslide monitoring and results showed that KF-FFT-SVM early warning model can predication the occurrence of landslide with high accuracy. It will make the early warning work for specific landslide more effective and costless, although numerous continuous monitored precursor slide deformation data are needed to trained the model well.


2014 ◽  
Author(s):  
Irving Biederman ◽  
Ori Amir
Keyword(s):  

2015 ◽  
Vol 2 (1) ◽  
pp. 35-41
Author(s):  
Rivan Risdaryanto ◽  
Houtman P. Siregar ◽  
Dedy Loebis

The real-time system is now used on many fields, such as telecommunication, military, information system, evenmedical to get information quickly, on time and accurate. Needless to say, a real-time system will always considerthe performance time. In our application, we define the time target/deadline, so that the system should execute thewhole tasks under predefined deadline. However, if the system failed to finish the tasks, it will lead to fatal failure.In other words, if the system cannot be executed on time, it will affect the subsequent tasks. In this paper, wepropose a real-time system for sending data to find effectiveness and efficiency. Sending data process will beconstructed in MATLAB and sending data process has a time target as when data will send.


Sign in / Sign up

Export Citation Format

Share Document