Racial and Ethnic Disparities Associated with Traumatic Brain Injury Across the Continuum of Care: a Narrative Review and Directions for Future Research

Author(s):  
Altaf Saadi ◽  
Sarah Bannon ◽  
Eric Watson ◽  
Ana-Maria Vranceanu
2017 ◽  
Vol 42 (1) ◽  
pp. 51-56 ◽  
Author(s):  
Seema Sikka ◽  
Angela Vrooman ◽  
Librada Callender ◽  
David Salisbury ◽  
Monica Bennett ◽  
...  

PM&R ◽  
2011 ◽  
Vol 3 (12) ◽  
pp. 1083-1091 ◽  
Author(s):  
Juan Carlos Arango-Lasprilla ◽  
Jessica M. Ketchum ◽  
Allen N. Lewis ◽  
Denise Krch ◽  
Kelli W. Gary ◽  
...  

Cephalalgia ◽  
2020 ◽  
pp. 033310242097018
Author(s):  
Todd J Schwedt

Background/objective Post-traumatic headache is one of the most common and persistent symptoms following mild traumatic brain injury. The objective of this narrative review is to provide an update on the diagnostic criteria, clinical presentation, epidemiology, pathophysiology, and treatment of post-traumatic headache, and to identify future research priorities. Methods This is a narrative review of the literature regarding post-traumatic headache attributed to mild traumatic brain injury. Results Onset of post-traumatic headache within 7 days of injury is the only evidence for a causal relationship between the injury and the headache included in the diagnostic criteria. Post-traumatic headache often resolves within the first few days of onset, whereas it persists for at least 3 months in 30–50%. The majority of insights into post-traumatic headache pathophysiology come from pre-clinical animal studies and human imaging studies, which implicate structural, functional, metabolic, and neuroinflammatory mechanisms for post-traumatic headache. There is a paucity of quality evidence for how to best treat post-traumatic headache. Conclusions Although meaningful progress has been made in the post-traumatic headache field, priorities for future research are numerous, including the optimization of diagnostic criteria, a greater understanding of post-traumatic headache pathophysiology, identifying mechanisms and predictors for post-traumatic headache persistence, and identifying safe, well-tolerated, effective therapies.


2016 ◽  
Vol 97 (10) ◽  
pp. e111
Author(s):  
Seema Sikka ◽  
Librada Callender ◽  
Angela Vrooman ◽  
David Salisbury ◽  
Simon Driver ◽  
...  

2016 ◽  
Vol 39 (20) ◽  
pp. 2071-2080 ◽  
Author(s):  
Anne L. Harrison ◽  
Elizabeth G. Hunter ◽  
Heather Thomas ◽  
Paige Bordy ◽  
Erin Stokes ◽  
...  

2019 ◽  
Author(s):  
Emily L. Dennis ◽  
Karen Caeyenberghs ◽  
Robert F. Asarnow ◽  
Talin Babikian ◽  
Brenda Bartnik-Olson ◽  
...  

Traumatic brain injury (TBI) is a major cause of death and disability in children in both developed and developing nations. Children and adolescents suffer from TBI at a higher rate than the general population; however, research in this population lags behind research in adults. This may be due, in part, to the smaller number of investigators engaged in research with this population and may also be related to changes in safety laws and clinical practice that have altered length of hospital stays, treatment, and access to this population. Specific developmental issues also warrant attention in studies of children, and the ever-changing context of childhood and adolescence may require larger sample sizes than are commonly available to adequately address remaining questions related to TBI. The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Pediatric Moderate-Severe TBI (msTBI) group aims to advance research in this area through global collaborative meta-analysis. In this paper we discuss important challenges in pediatric TBI research and opportunities that we believe the ENIGMA Pediatric msTBI group can provide to address them. We conclude with recommendations for future research in this field of study.


2020 ◽  
Vol 4 (Supplement_1) ◽  
pp. 886-887
Author(s):  
Andrei Irimia ◽  
Ammar Dharani ◽  
Van Ngo ◽  
David Robles ◽  
Kenneth Rostowsky

Abstract Mild traumatic brain injury (mTBI) affects white matter (WM) integrity and accelerates neurodegeneration. This study assesses the effects of age, sex, and cerebral microbleed (CMB) load as predictors of WM integrity in 70 subjects aged 18-77 imaged acutely and ~6 months after mTBI using diffusion tensor imaging (DTI). Two-tensor unscented Kalman tractography was used to segment and cluster 73 WM structures and to map changes in their mean fractional anisotropy (FA), a surrogate measure of WM integrity. Dimensionality reduction of mean FA feature vectors was implemented using principal component (PC) analysis, and two prominent PCs were used as responses in a multivariate analysis of covariance. Acutely and chronically, older age was significantly associated with lower FA (F2,65 = 8.7, p < .001, η2 = 0.2; F2,65 = 12.3, p < .001, η2 = 0.3, respectively), notably in the corpus callosum and in dorsolateral temporal structures, confirming older adults’ WM vulnerability to mTBI. Chronically, sex was associated with mean FA (F2,65 = 5.0, p = 0.01, η2 = 0.1), indicating males’ greater susceptibility to WM degradation. Acutely, a significant association was observed between CMB load and mean FA (F2,65 = 5.1, p = 0.009, η2 = 0.1), suggesting that CMBs reflect the acute severity of diffuse axonal injury. Together, these findings indicate that older age, male sex, and CMB load are risk factors for WM degeneration. Future research should examine how sex- and age-mediated WM degradation lead to cognitive decline and connectome degeneration after mTBI.


Nutrients ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 586 ◽  
Author(s):  
Hamilton Roschel ◽  
Bruno Gualano ◽  
Sergej M. Ostojic ◽  
Eric S. Rawson

There is a robust and compelling body of evidence supporting the ergogenic and therapeutic role of creatine supplementation in muscle. Beyond these well-described effects and mechanisms, there is literature to suggest that creatine may also be beneficial to brain health (e.g., cognitive processing, brain function, and recovery from trauma). This is a growing field of research, and the purpose of this short review is to provide an update on the effects of creatine supplementation on brain health in humans. There is a potential for creatine supplementation to improve cognitive processing, especially in conditions characterized by brain creatine deficits, which could be induced by acute stressors (e.g., exercise, sleep deprivation) or chronic, pathologic conditions (e.g., creatine synthesis enzyme deficiencies, mild traumatic brain injury, aging, Alzheimer’s disease, depression). Despite this, the optimal creatine protocol able to increase brain creatine levels is still to be determined. Similarly, supplementation studies concomitantly assessing brain creatine and cognitive function are needed. Collectively, data available are promising and future research in the area is warranted.


Sign in / Sign up

Export Citation Format

Share Document