scholarly journals Total wave power absorption by a multi-float wave energy converter and a semi-submersible wind platform with a fast far field model for arrays

Author(s):  
Peter Stansby ◽  
Efrain Carpintero Moreno ◽  
Sam Draycott ◽  
Tim Stallard

AbstractWave energy converters absorb wave power by mechanical damping for conversion into electricity and multi-float systems may have high capture widths. The kinetic energy of the floats causes waves to be radiated, generating radiation damping. The total wave power absorbed is thus due to mechanical and radiation damping. A floating offshore wind turbine platform also responds dynamically and damping plates are generally employed on semi-submersible configurations to reduce motion, generating substantial drag which absorbs additional wave power. Total wave power absorption is analysed here by linear wave diffraction–radiation–drag models for a multi-float wave energy converter and an idealised wind turbine platform, with response and mechanical power in the wave energy case compared with wave basin experiments, including some directional spread wave cases, and accelerations compared in the wind platform case. The total power absorption defined by capture width is input into a far field array model with directional wave spreading. Wave power transmission due a typical wind turbine array is only reduced slightly (less than 5% for a 10 × 10 platform array) but may be reduced significantly by rows of wave energy converters (by up to about 50%).

2011 ◽  
Vol 347-353 ◽  
pp. 3744-3749
Author(s):  
Yu Jiong Gu ◽  
Li Jun Zhao ◽  
Jing Hua Huang ◽  
Bing Bing Wang

Abstract: Being confronted with the severity of the energy and environment problems, the world attaches more and more importance to the potential of wave energy. Based on the necessity and feasibility of wave power development, the basic principles of wave energy converter are in this paper firstly. Then some kinds of WEC’s principle, merits and drawbacks, technology application are reviewed, such as OWC, raft, Tapchan, point absorber, Salter, pendulum. After that, wave energy developing conditions in some typical countries are recommended. After reviewing the features of various wave energy converters and WEC application examples in some countries, prospect and a few problems in wave energy utilizing are stated briefly.


2021 ◽  
Vol 9 (2) ◽  
pp. 133
Author(s):  
Hsien Hua Lee ◽  
Guan-Fu Chen ◽  
Hsiang-Yu Hsieh

This study is focused on the wave energy converter of an oscillating water column (OWC) system that is integrated with a jacket type infrastructure applied for an offshore wind turbine system. In this way, electricity generation by both wind power and wave power can be conducted simultaneously to maximize the utilization of sustainable energy. A numerical analysis was performed in this research to model and simulate the airflow response and evaluate the converting efficiency of wave energy from an OWC system integrated with an offshore template structural system. The performance of the system including the generating airflow velocity, air-pressure in the chamber, generating power and then the converting efficiency of power from waves are all analyzed and discussed in terms of the variations of the OWC system’s geometrical parameters. The parameters under consideration include the exhale orifice-area of airflow, gate-openings of inflow water and the submerged chamber depth. It is found that from the analytical results the performance of the OWC wave energy converter is influenced by the dimensional parameters along with the design conditions of the local environment. After a careful design based on the in-situ conditions including water depth and wave parameters, an open OWC system can be successfully applied to the template structure of offshore wind power infrastructure as a secondary generating system for the multi-purpose utilization of the structure.


2016 ◽  
Vol 7 (3) ◽  
pp. 108-117 ◽  
Author(s):  
Ashank Sinha ◽  
D Karmakar ◽  
C Guedes Soares

The effect of water depth on the power absorption by a single heaving point absorber wave energy converter, attached to a hydraulic power take-off system, is simulated and analysed. The wave energy flux for changing water depths is presented and the study is carried out at a location in the north-west Portuguese coast, favourable for wave power generation. This analysis is based on a procedure to modify the wave spectrum as the water depth reduces, namely, the TMA spectrum (Transformation spectrum). The present study deals with the effect of water depth on the spectral shape and significant wave heights. The reactive control strategy, which includes an external damping coefficient and a negative spring term, is used to maximize power absorption by the wave energy converter. The presented work can be used for making decisions regarding the best water depth for the installation of point absorber wave energy converters in the Portuguese nearshore.


Author(s):  
Rony JS ◽  
Debabrata Karmakar

Abstract The combined offshore wind and wave energy on an integrated platform is an economical solution for the offshore energy industry as they share the infrastructure and ocean space. The study presents the dynamic analysis of the Submerged Tension-Leg Platform (STLP) combined with a heaving-type point absorber wave energy converter (WEC). The feasibility study of the hybrid concept is performed using the aero-servo-hydro-elastic simulation tool FAST. The study analyses the responses of the combined system to understand the influence of the WECs on the STLP platform for various operating conditions of the wind turbine under regular and irregular waves. A positive synergy is observed between the platform and the WECs, and the study also focuses on the forces and moments developed at the interface of the tower and platform to understand the effect of wind energy on the turbine tower and importance of motion amplitudes on the performance of the combined platform system. The mean and standard deviation for the translation and rotational motions of combined wind and wave energy converters are determined for different sea states under both regular and irregular waves to analyse the change in responses of the structure. The study observed a reduction in motion amplitudes of the hybrid floating system with the addition of the wave energy converters around the STLP floater to improve the energy efficiency of the hybrid system. The study helps in understanding the best possible arrangement of point absorber type wave energy converters at the conceptual stage of the design process.


2005 ◽  
Vol 128 (1) ◽  
pp. 56-64 ◽  
Author(s):  
Gaelle Duclos ◽  
Aurelien Babarit ◽  
Alain H. Clément

Considered as a source of renewable energy, wave is a resource featuring high variability at all time scales. Furthermore wave climate also changes significantly from place to place. Wave energy converters are very often tuned to suit the more frequent significant wave period at the project site. In this paper we show that optimizing the device necessitates accounting for all possible wave conditions weighted by their annual occurrence frequency, as generally given by the classical wave climate scatter diagrams. A generic and very simple wave energy converter is considered here. It is shown how the optimal parameters can be different considering whether all wave conditions are accounted for or not, whether the device is controlled or not, whether the productive motion is limited or not. We also show how they depend on the area where the device is to be deployed, by applying the same method to three sites with very different wave climate.


Author(s):  
Pedro C. Vicente ◽  
Anto´nio F. O. Falca˜o ◽  
Paulo A. P. Justino

Floating point absorbers devices are a large class of wave energy converters for deployment offshore, typically in water depths between 40 and 100m. As floating oil and gas platforms, the devices are subject to drift forces due to waves, currents and wind, and therefore have to be kept in place by a proper mooring system. Although similarities can be found between the energy converting systems and floating platforms, the mooring design requirements will have some important differences between them, one of them associated to the fact that, in the case of a wave energy converter, the mooring connections may significantly modify its energy absorption properties by interacting with its oscillations. It is therefore important to examine what might be the more suitable mooring design for wave energy devices, according to the converters specifications. When defining a mooring system for a device, several initial parameters have to be established, such as cable material and thickness, distance to the mooring point on the bottom, and which can influence the device performance in terms of motion, power output and survivability. Different parameters, for which acceptable intervals can be established, will represent different power absorptions, displacements from equilibrium position, load demands on the moorings and of course also different costs. The work presented here analyzes what might be, for wave energy converter floating point absorber, the optimal mooring configuration parameters, respecting certain pre-established acceptable intervals and using a time-domain model that takes into account the non-linearities introduced by the mooring system. Numerical results for the mooring forces demands and also motions and absorbed power, are presented for two different mooring configurations for a system consisting of a hemispherical buoy in regular waves and assuming a liner PTO.


Author(s):  
Eirini Katsidoniotaki ◽  
Edward Ransley ◽  
Scott Brown ◽  
Johannes Palm ◽  
Jens Engström ◽  
...  

Abstract Accurate modeling and prediction of extreme loads for survivability is of crucial importance if wave energy is to become commercially viable. The fundamental differences in scale and dynamics from traditional offshore structures, as well as the fact that wave energy has not converged around one or a few technologies, implies that it is still an open question how the extreme loads should be modeled. In recent years, several methods to model wave energy converters in extreme waves have been developed, but it is not yet clear how the different methods compare. The purpose of this work is the comparison of two widely used approaches when studying the response of a point-absorber wave energy converter in extreme waves, using the open-source CFD software OpenFOAM. The equivalent design-waves are generated both as equivalent regular waves and as focused waves defined using NewWave theory. Our results show that the different extreme wave modeling methods produce different dynamics and extreme forces acting on the system. It is concluded that for the investigation of point-absorber response in extreme wave conditions, the wave train dynamics and the motion history of the buoy are of high importance for the resulting buoy response and mooring forces.


Sign in / Sign up

Export Citation Format

Share Document