scholarly journals An approach to optimize the cost of transportation problem based on triangular fuzzy programming problem

Author(s):  
Sapan Kumar Das

AbstractIn this article, we address a fully fuzzy triangular linear fractional programming (FFLFP) problem under the condition that all the parameters and decision variables are characterized by triangular fuzzy numbers. Utilizing the computation of triangular fuzzy numbers and Lexicographic order (LO), the FFLFP problem is changed over to a multi-objective function. Consequently, the problem is changed into a multi-objective crisp problem. This paper outfits another idea for diminishing the computational complexity, in any case without losing its viability crisp LFP issues. Lead from real-life problems, a couple of mathematical models are considered to survey the legitimacy, usefulness and applicability of our method. Finally, some mathematical analysis along with one case study is given to show the novel strategies are superior to the current techniques.

Author(s):  
Tapan Kumar Singh ◽  
Kedar Nath Das

Most of the problems arise in real-life situation are complex natured. The level of the complexity increases due to the presence of highly non-linear constraints and increased number of decision variables. Finding the global solution for such complex problems is a greater challenge to the researchers. Fortunately, most of the time, bio-inspired techniques at least provide some near optimal solution, where the traditional methods become even completely handicapped. In this chapter, the behavioral study of a fly namely ‘Drosophila' has been presented. It is worth noting that, Drosophila uses it optimized behavior, particularly, when searches its food in the nature. Its behavior is modeled in to optimization and software is designed called Drosophila Food Search Optimization (DFO).The performance, DFO has been used to solve a wide range of both unconstrained and constrained benchmark function along with some of the real life problems. It is observed from the numerical results and analysis that DFO outperform the state of the art evolutionary techniques with faster convergence rate.


A test blueprint/test template, also known as the table of specifications, represents the structure of a test. It has been highly recommended in assessment textbook to carry out the preparation of a test with a test blueprint. This chapter focuses on modeling a dynamic test paper template using multi-objective optimization algorithm and makes use of the template in dynamic generation of examination test paper. Multi-objective optimization-based models are realistic models for many complex optimization problems. Modeling a dynamic test paper template, similar to many real-life problems, includes solving multiple conflicting objectives satisfying the template specifications.


2019 ◽  
Vol 17 (1) ◽  
pp. 607-626 ◽  
Author(s):  
Chunquan Li

Abstract A multi-objective linear programming problem (ITF-MOLP) is presented in this paper, in which coefficients of both the objective functions and constraints are interval-typed triangular fuzzy numbers. An algorithm of the ITF-MOLP is provided by introducing the cut set of interval-typed triangular fuzzy numbers and the dominance possibility criterion. In particular, for a given level, the ITF-MOLP is converted to the maximization of the sum of membership degrees of each objective in ITF-MOLP, whose membership degrees are established based on the deviation from optimal solutions of individual objectives, and the constraints are transformed to normal inequalities by utilizing the dominance possibility criterion when compared with two interval-typed triangular fuzzy numbers. Then the equivalent linear programming model is obtained which could be solved by Matlab toolbox. Finally several examples are provided to illuminate the proposed method by comparing with the existing methods and sensitive analysis demonstrates the stability of the optimal solution.


2015 ◽  
Vol 20 (3) ◽  
pp. 329-345 ◽  
Author(s):  
Suvasis Nayak ◽  
Akshay Ojha

This paper illustrates a procedure to generate pareto optimal solutions of multi-objective linear fractional programming problem (MOLFPP) with closed interval coefficients of decision variables both in objective and constraint functions. E-constraint method is applied to produce pareto optimal solutions comprising most preferred solution to satisfy all objectives. A numerical example is solved using our proposed method and the result so obtained is compared with that of fuzzy programming which justifies the efficiency and authenticity of the proposed method.


2018 ◽  
Vol 15 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Sajja Radhika ◽  
Aparna Chaparala

Optimization is necessary for finding appropriate solutions to a range of real life problems. Evolutionary-approach-based meta-heuristics have gained prominence in recent years for solving Multi Objective Optimization Problems (MOOP). Multi Objective Evolutionary Approaches (MOEA) has substantial success across a variety of real-world engineering applications. The present paper attempts to provide a general overview of a few selected algorithms, including genetic algorithms, ant colony optimization, particle swarm optimization, and simulated annealing techniques. Additionally, the review is extended to present differential evolution and teaching-learning-based optimization. Few applications of the said algorithms are also presented. This review intends to serve as a reference for further work in this domain.


2019 ◽  
Vol 8 (4) ◽  
pp. 10833-10842

Execution of any project with optimum duration, cost, quality and risk is very significant for project administrators in recent very competitive commercial situation. Sometimes it is not possible to have detailed earlier statistics about project criteria. In such situations, estimation of different Decision makers are considered in linguistic variables and altered into triangular fuzzy numbers as fuzzy numbers have ability to deal with vagueness. In this paper, we frame a new multi-mode multi objective critical path problem and suggest a possibilistic methodology to find critical path for a project where three decision makers’ views are considered as three modes of execution in terms of linguistic variables. In this paper have formulated model of multiple mode in project network problem and find its solution with fuzzy programming approach with exponential membership and linear membership function. The proposed approach is useful to solve multi-mode project management problem which calculates optimal critical path according to four criteria- time, cost, risk and quality with three activities modes of execution in fuzzy environment


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2937
Author(s):  
Saeid Jafarzadeh Ghoushchi ◽  
Elnaz Osgooei ◽  
Gholamreza Haseli ◽  
Hana Tomaskova

Recently, new methods have been recommended to solve fully fuzzy linear programming (FFLP) issues. Likewise, the present study examines a new approach to solve FFLP issues through fuzzy decision parameters and variables using triangular fuzzy numbers. The strategy, which is based on alpha-cut theory and modified triangular fuzzy numbers, is suggested to obtain the optimal fully fuzzy solution for real-world problems. In this method, the problem is considered as a fully fuzzy problem and then is solved by applying the new definition presented for the triangular fuzzy number to optimize decision variables and the objective function. Several numerical examples are solved to illustrate the above method.


2020 ◽  
Vol 2020 ◽  
pp. 1-25
Author(s):  
Tahir Mahmood ◽  
Ubaid Ur Rehman ◽  
Zeeshan Ali ◽  
Ronnason Chinram

Complex dual hesitant fuzzy set (CDHFS) is a combination of two modifications, called complex fuzzy set (CFS) and dual hesitant fuzzy set (DHFS). CDHFS makes two degrees, called membership valued and nonmembership valued in the form of a finite subset of a unit disc in the complex plane, and is a capable method to solve uncertain and unpredictable information in real-life problems. The goal of this study is to describe the notion of CDHFS and its operational laws. The novel approach of the complex interval-valued dual hesitant fuzzy set (CIvDHFS) and its fundamental laws are also described and defended with the help of an example. Further, the vector similarity measures (VSMs), weighted vector similarity measures (WVSMs), hybrid vector similarity measure, and weighted hybrid vector similarity measure are additionally explored. These similarity measures (SM) are applied to the environment of pattern recognition and medical diagnosis to assess the capability and feasibility of the interpreted measures. We additionally solved some numerical examples utilizing the established measures. We examine the dependability and validity of the proposed measures by comparing them with some existing measures. The advantages, comparative analysis, and graphical portrayal of the investigated interpreted measures and existing measures are additionally described in detail.


2020 ◽  
Vol 28 (1) ◽  
pp. 95-108 ◽  
Author(s):  
Daniel Cinalli ◽  
Luis Martí ◽  
Nayat Sanchez-Pi ◽  
Ana Cristina Bicharra Garcia

Abstract Evolutionary multi-objective optimization algorithms (EMOAs) have been successfully applied in many real-life problems. EMOAs approximate the set of trade-offs between multiple conflicting objectives, known as the Pareto optimal set. Reference point approaches can alleviate the optimization process by highlighting relevant areas of the Pareto set and support the decision makers to take the more confident evaluation. One important drawback of this approaches is that they require an in-depth knowledge of the problem being solved in order to function correctly. Collective intelligence has been put forward as an alternative to deal with situations like these. This paper extends some well-known EMOAs to incorporate collective preferences and interactive techniques. Similarly, two new preference-based multi-objective optimization performance indicators are introduced in order to analyze the results produced by the proposed algorithms in the comparative experiments carried out.


Sign in / Sign up

Export Citation Format

Share Document