scholarly journals An exsitu underground coal gasification experiment with a siderite interlayer: course of the process, production gas, temperatures and energy efficiency

Author(s):  
Marian Wiatowski ◽  
Krzysztof Kapusta ◽  
Jacek Nowak ◽  
Marcin Szyja ◽  
Wioleta Basa

AbstractA 72-h ex situ hard coal gasification test in one large block of coal was carried out. The gasifying agent was oxygen with a constant flow rate of 4.5 m3/h. The surroundings of coal were simulated with wet sand with 11% moisture content. A 2-cm interlayer of siderite was placed in the horizontal cut of the coal block. As a result of this process, gas with an average flow rate of 12.46 m3/h was produced. No direct influence of siderite on the gasification process was observed; however, measurements of CO2 content in the siderite interlayer before and after the process allow to determine the location of high-temperature zones in the reactor. The greatest influence on the efficiency of the gasification process was exerted by water contained in wet sand. At the high temperature that prevailed in the reactor, this water evaporated and reacted with the incandescent coal, producing hydrogen and carbon monoxide. This reaction contributes to the relatively high calorific value of the resulting process gas, averaging 9.41 MJ/kmol, and to the high energy efficiency of the whole gasification process, which amounts to approximately 70%.

2020 ◽  
Author(s):  
Marian Wiatowski ◽  
Krzysztof Kapusta ◽  
Jacek Nowak ◽  
Marcin Szyja ◽  
Wioleta Basa

Abstract A 72-hour ex situ hard coal gasification test in one large block of coal was carried out. The gasifying agent was oxygen with a constant flow rate of 4.5 Nm3/h. The surroundings of coal were simulated with wet sand with 11% moisture content. A 2-cm interlayer of siderite was placed in the horizontal cut of the coal block. As a result of this process, gas with an average flow rate of 12.46 Nm3/h was produced. No direct influence of siderite on the gasification process was observed; however, measurements of CO2 content in the siderite interlayer before and after the process allowed to determine the location of high-temperature zones in the reactor. The greatest influence on the efficiency of the gasification process was exerted by water contained in wet sand. At the high temperature that prevailed in the reactor, this water evaporated and reacted with the incandescent coal, producing hydrogen and carbon monoxide. This reaction contributed to the relatively high calorific value of the resulting process gas, averaging 9.41 MJ/kmol, and to the high energy efficiency of the whole gasification process, which amounted to approximately 70%.


Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1334 ◽  
Author(s):  
Krzysztof Kapusta ◽  
Marian Wiatowski ◽  
Krzysztof Stańczyk ◽  
Renato Zagorščak ◽  
Hywel Rhys Thomas

An experimental campaign on the methane-oriented underground coal gasification (UCG) process was carried out in a large-scale laboratory installation. Two different types of coal were used for the oxygen/steam blown experiments, i.e., “Six Feet” semi-anthracite (Wales) and “Wesoła” hard coal (Poland). Four multi-day gasification tests (96 h continuous processes) were conducted in artificially created coal seams under two distinct pressure regimes-20 and 40 bar. The experiments demonstrated that the methane yields are significantly dependent on both the properties of coal (coal rank) and the pressure regime. The average CH4 concentration for “Six Feet” semi-anthracite was 15.8%vol. at 20 bar and 19.1%vol. at 40 bar. During the gasification of “Wesoła” coal, the methane concentrations were 10.9%vol. and 14.8%vol. at 20 and 40 bar, respectively. The “Six Feet” coal gasification was characterized by much higher energy efficiency than gasification of the “Wesoła” coal and for both tested coals, the efficiency increased with gasification pressure. The maximum energy efficiency of 71.6% was obtained for “Six Feet” coal at 40 bar. A positive effect of the increase in gasification pressure on the stabilization of the quantitative parameters of UCG gas was demonstrated.


Author(s):  
Marian Wiatowski ◽  
Roksana Muzyka ◽  
Krzysztof Kapusta ◽  
Maciej Chrubasik

AbstractIn this study, the composition of tars collected during a six-day underground coal gasification (UCG) test at the experimental mine ‘Barbara’ in Poland in 2013 was examined. During the test, tar samples were taken every day from the liquid product separator and analysed by the methods used for testing properties of typical coke oven (coal) tar. The obtained results were compared with each other and with the data for coal tar. As gasification progressed, a decreasing trend in the water content and an increasing trend in the ash content were observed. The tars tested were characterized by large changes in the residue after coking and content of parts insoluble in toluene and by smaller fluctuations in the content of parts insoluble in quinoline. All tested samples were characterized by very high distillation losses, while for samples starting from the third day of gasification, a clear decrease in losses was visible. A chromatographic analysis showed that there were no major differences in composition between the tested tars and that none of the tar had a dominant component such as naphthalene in coal tar. The content of polycyclic aromatic hydrocarbons (PAHs) in UCG tars is several times lower than that in coal tar. No light monoaromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes—BTEX) were found in the analysed tars, which results from the fact that these compounds, due to their high volatility, did not separate from the process gas in the liquid product separator.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5444
Author(s):  
Milan Durdán ◽  
Marta Benková ◽  
Marek Laciak ◽  
Ján Kačur ◽  
Patrik Flegner

The underground coal gasification represents a technology capable of obtaining synthetic coal gas from hard-reached coal deposits and coal beds with tectonic faults. This technology is also less expensive than conventional coal mining. The cavity is formed in the coal seam by converting coal to synthetic gas during the underground coal gasification process. The cavity growth rate and the gasification queue’s moving velocity are affected by controllable variables, i.e., the operation pressure, the gasification agent, and the laboratory coal seam geometry. These variables can be continuously measured by standard measuring devices and techniques as opposed to the underground temperature. This paper researches the possibility of the regression models utilization for temperature data prediction for this reason. Several regression models were proposed that were differed in their structures, i.e., the number and type of selected controllable variables as independent variables. The goal was to find such a regression model structure, where the underground temperature is predicted with the greatest possible accuracy. The regression model structures’ proposal was realized on data obtained from two laboratory measurements realized in the ex situ reactor. The obtained temperature data can be used for visualization of the cavity growth in the gasified coal seam.


2017 ◽  
Vol 62 (2) ◽  
pp. 253-268
Author(s):  
Tomasz Janoszek ◽  
Krzysztof Stańczyk ◽  
Adam Smoliński

AbstractThere are many complex physical and chemical processes, which take place among the most notable are the chemical reactions, mass and energy transport, and phase transitions. The process itself takes place in a block of coal, which properties are variable and not always easy to determine in the whole volume. The complexity of the phenomena results in the need for a construction of a complex model in order to study the process on the basis of simulation. In the present study attempts to develop a numerical model of the fixed bed coal gasification process in homogeneous solid block with a given geometry were mode. On the basis of analysis and description of the underground coal gasification simulated in the ex-situ experiment, a numerical model of the coal gasification process was developed. The model was implemented with the use of computational fluid dynamic CFD methods. Simulations were conducted using commercial numerical CFD code and the results were verified with the experimental data.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1532
Author(s):  
Tomasz Janoszek ◽  
Wojciech Masny

The article presents an experimental laboratory setup used for the empirical determination of the gasification of coal samples in the form of solid rock, cut out in the form of a cylinder. An experimental laboratory set enabled a series of experiments carried out at 700 °C with steam as the gasification agent. The samples were prepared from the coal seam, the use of which can be planned in future underground and ground gasification experiments. The result of the conducted coal gasification process, using steam as the gasification agent, was the syngas, including hydrogen (H2) with a concentration between 46% and 58%, carbon dioxide (CO2) with a concentration between 13% and 17%, carbon monoxide (CO) with a concentration between 7% and 11.5%, and methane(CH4) with a concentration between 9.6% and 20.1%.The results from the ex-situ experiments were compared with the results of numerical simulations using computational fluid dynamics (CFD) methods. A three-dimensional numerical model for the coal gasification process was developed using Ansys-Fluent software to simulate an ex-situ allothermal coal gasification experiment using low-moisture content hard coal under atmospheric conditions. In the numerical model, the mass exchange (flow of the gasification agent), the turbulence description model, heat exchange, the method of simulating the chemical reactions, and the method of mapping the porosity medium were included. Using the construction data of an experimental laboratory set, a numerical model was developed and its discretization (development of a numerical grid, based on which calculations are made) was carried out. Tip on the reactor, supply method, and parameters maintained during the gasification process were used to define the numerical model in the Ansys-Fluent code. A part of the data were supplemented on the basis of literature sources. Where necessary, the literature parameters were converted to the conditions corresponding to the experiment, which were carried out. After performing the calculations, the obtained results were compared with the available experimental data. The experimental and the simulated results were in good agreement, showing a similar tendency.


2015 ◽  
Vol 60 (2) ◽  
pp. 443-453 ◽  
Author(s):  
Józef Dubiński ◽  
Marian Turek

Abstract An analysis of conditions which enable attaining possibly highest productivity of industrial scale underground coal gasification technology is presented. The analysis was prepared basing on results obtained during an experimental gasification process conducted in workings of an active hard coal mine. Basic aspects determining application and productivity of the technology concern both general conditions, referring to the hard coal seam being gasified, and practical issues, which need to be considered in coal mine conditions. To present them, the technology of underground coal gasification and still commonly used classical longwall method of mining coal seams are compared.


2015 ◽  
Vol 60 (3) ◽  
pp. 663-676 ◽  
Author(s):  
Jan Wachowicz ◽  
Jacek Marian Łączny ◽  
Sebastian Iwaszenko ◽  
Tomasz Janoszek ◽  
Magdalena Cempa-Balewicz

Abstract The results of model studies involving numerical simulation of underground coal gasification process are presented. For the purpose of the study, the software of computational fluid dynamics (CFD) was selected for simulation of underground coal gasification. Based on the review of the literature, it was decided that ANSYS-Fluent will be used as software for the performance of model studies. The ANSYS- -Fluent software was used for numerical calculations in order to identify the distribution of changes in the concentration of syngas components as a function of duration of coal gasification process. The nature of the calculations was predictive. A geometric model has been developed based on construction data of the georeactor used during the researches in Experimental Mine “Barbara” and Coal Mine “Wieczorek” and it was prepared by generating a numerical grid. Data concerning the georeactor power supply method and the parameters maintained during the process used to define the numerical model. Some part of data was supplemented based on the literature sources. The main assumption was to base the simulation of the georeactor operation on a mathematical models describing reactive fluid flow. Components of the process gas and the gasification agent move along the gasification channel and simulate physicochemical phenomena associated with the transfer of mass and energy as well as chemical reactions (together with the energy effect). Chemical reactions of the gasification process are based on a kinetic equation which determines the course of a particular type of equation of chemical coal gasification. The interaction of gas with the surrounding coal layer has also been described as a part of the model. The description concerned the transport of thermal energy. The coal seam and the mass rock are treated as a homogeneous body. Modelling studies assumed the coal gasification process is carried out with the participation of separately oxygen and air as a gasification agent, under the specific conditions of the georeactor operations within the time interval of 100 hours and 305 hours. The results of the numerical solution have been compared with the results of experimental results under in-situ conditions.


2020 ◽  
Vol 60 (5) ◽  
pp. 391-399
Author(s):  
Milan Durdán ◽  
Ján Terpák ◽  
Ján Kačur ◽  
Marek Laciak ◽  
Patrik Flegner

The underground coal gasification is a continually evolving technology, which converts coal to calorific gas. There are many important parameters in this technology, which are difficult to measure. These parameters include the underground cavity growth, amount gasified coal, and the leakage of input and output gaseous components into the surrounding layers during the coal gasification process. Mathematical modeling of this process is one of the possible alternatives for determining these unknown parameters. In this paper, the structure of the mathematical model of laboratory underground coal gasification process from the material balance aspect is presented. The material balance consists of mass components entering and leaving from the UCG process. The paper shows a material balance in the form of a general mass balance and atomic species balance. The material balance was testing by six UCG laboratory experiments, which were realized in two ex-situ reactors.


2017 ◽  
Vol 57 (3) ◽  
pp. 182-200 ◽  
Author(s):  
Ján Kačur ◽  
Karol Kostúr

Underground Coal Gasification represents an alternative for conventional coal mining. This technology is also less expensive than traditional mining. It is expected that coal will be an important energy source in the coming decades. In requirement to improve the gasification process we must ensure that the combustion reactions generated enough energy to heat the reactants. This can be achieved by controlling the flow of oxidizing agents and the underpressure control at the exit of the reactor UCG. This paper aims to propose the stabilization of air flow as a main gasification agent injected to the gasifier, underground temperature and concentration of O2 in syngas. Also there is proposed the mechanism that could cope with uncertainties in the process of UCG and its control on stabilization level. Paper presents utilization of discrete controller with adaptation in order to stabilization of UCG process variables. The controllers were verified on experimental ex-situ reactor (generator).


Sign in / Sign up

Export Citation Format

Share Document