SWAT Model calibration and uncertainty analysis for streamflow prediction of the Tons River Basin, India, using Sequential Uncertainty Fitting (SUFI-2) algorithm

Author(s):  
Nirmal Kumar ◽  
Sudhir Kumar Singh ◽  
Prashant K. Srivastava ◽  
Boini Narsimlu
2015 ◽  
Vol 2 (1) ◽  
pp. 79-95 ◽  
Author(s):  
Boini Narsimlu ◽  
Ashvin K. Gosain ◽  
Baghu R. Chahar ◽  
Sudhir Kumar Singh ◽  
Prashant K. Srivastava

2019 ◽  
Vol 23 (2) ◽  
pp. 1113-1144 ◽  
Author(s):  
Abolanle E. Odusanya ◽  
Bano Mehdi ◽  
Christoph Schürz ◽  
Adebayo O. Oke ◽  
Olufiropo S. Awokola ◽  
...  

Abstract. The main objective of this study was to calibrate and validate the eco-hydrological model Soil and Water Assessment Tool (SWAT) with satellite-based actual evapotranspiration (AET) data from the Global Land Evaporation Amsterdam Model (GLEAM_v3.0a) and from the Moderate Resolution Imaging Spectroradiometer Global Evaporation (MOD16) for the Ogun River Basin (20 292 km2) located in southwestern Nigeria. Three potential evapotranspiration (PET) equations (Hargreaves, Priestley–Taylor and Penman–Monteith) were used for the SWAT simulation of AET. The reference simulations were the three AET variables simulated with SWAT before model calibration took place. The sequential uncertainty fitting technique (SUFI-2) was used for the SWAT model sensitivity analysis, calibration, validation and uncertainty analysis. The GLEAM_v3.0a and MOD16 products were subsequently used to calibrate the three SWAT-simulated AET variables, thereby obtaining six calibrations–validations at a monthly timescale. The model performance for the three SWAT model runs was evaluated for each of the 53 subbasins against the GLEAM_v3.0a and MOD16 products, which enabled the best model run with the highest-performing satellite-based AET product to be chosen. A verification of the simulated AET variable was carried out by (i) comparing the simulated AET of the calibrated model to GLEAM_v3.0b AET, which is a product that has different forcing data than the version of GLEAM used for the calibration, and (ii) assessing the long-term average annual and average monthly water balances at the outlet of the watershed. Overall, the SWAT model, composed of the Hargreaves PET equation and calibrated using the GLEAM_v3.0a data (GS1), performed well for the simulation of AET and provided a good level of confidence for using the SWAT model as a decision support tool. The 95 % uncertainty of the SWAT-simulated variable bracketed most of the satellite-based AET data in each subbasin. A validation of the simulated soil moisture dynamics for GS1 was carried out using satellite-retrieved soil moisture data, which revealed good agreement. The SWAT model (GS1) also captured the seasonal variability of the water balance components at the outlet of the watershed. This study demonstrated the potential to use remotely sensed evapotranspiration data for hydrological model calibration and validation in a sparsely gauged large river basin with reasonable accuracy. The novelty of the study is the use of these freely available satellite-derived AET datasets to effectively calibrate and validate an eco-hydrological model for a data-scarce catchment.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1177 ◽  
Author(s):  
Lufang Zhang ◽  
Baolin Xue ◽  
Yuhui Yan ◽  
Guoqiang Wang ◽  
Wenchao Sun ◽  
...  

Distributed hydrological models play a vital role in water resources management. With the rapid development of distributed hydrological models, research into model uncertainty has become a very important field. When studying traditional hydrological model uncertainty, it is very common to use multisite observation data to evaluate the performance of the model in the same watershed, but there are few studies on uncertainty in watersheds with different characteristics. This study is based on the Soil and Water Assessment Tool (SWAT) model, and uses two common methods: Sequential Uncertainty Fitting Version 2 (SUFI-2) and Generalized Likelihood Uncertainty Estimation (GLUE) for uncertainty analysis. We compared these methods in terms of parameter uncertainty, model prediction uncertainty, and simulation effects. The Xiaoqing River basin and the Xinxue River basin, which have different characteristics, including watershed geography and scale, were used for the study areas. The results show that the GLUE method had better applicability in the Xiaoqing River basin, and that the SUFI-2 method provided more reasonable and accurate analysis results in the Xinxue River basin; thus, the applicability was higher. The uncertainty analysis method is affected to some extent by the characteristics of the watershed.


2010 ◽  
Vol 24 (15) ◽  
pp. 4567-4578 ◽  
Author(s):  
Santosh G. Thampi ◽  
Kolladi Y. Raneesh ◽  
T. V. Surya

RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Ana Clara Lazzari Franco ◽  
Nadia Bernardi Bonumá

ABSTRACT Although intrinsic, uncertainty for hydrological model estimation is not always reported. The aim of this study is to evaluate the use of satellite-based evapotranspiration on SWAT model calibration, regarding uncertainty and model performance in streamflow simulation. The SWAT model was calibrated in a monthly step and validated in monthly (streamflow and evapotranspiration) and daily steps (streamflow only). The validation and calibration period covers the years from 2006 to 2009 and the study area is the upper Negro river basin, situated in Santa Catarina and Paraná. SWAT-CUP was used to calibrate and validate the model, using SUFI-2 with KGE (Kling-Gupta Efficiency) as objective function. Different calibration strategies were evaluated, considering single-variable and multi-variable calibration, using streamflow and evapotranspiration. Compared to conventional single-variable calibration (streamflow only), multi-variable calibration (streamflow and evapotranspiration, simultaneously) produce better streamflow performance, especially for low flow periods and daily step validation. Despite that, no evidence of reduction of streamflow prediction uncertainty was observed. SWAT model calibration using solely evapotranspiration still requires further studies.


Hydrology ◽  
2019 ◽  
Vol 6 (1) ◽  
pp. 17 ◽  
Author(s):  
Narayanan Kannan ◽  
Chinnasamy Santhi ◽  
Michael J. White ◽  
Sushant Mehan ◽  
Jeffrey G. Arnold ◽  
...  

This study is a part of the Conservation Effects Assessment Project (CEAP) aimed to quantify the environmental and economic benefits of conservation practices implemented in the cultivated cropland throughout the United States. The Soil and Water Assessment Tool (SWAT) model under the Hydrologic United Modeling of the United States (HUMUS) framework was used in the study. An automated flow calibration procedure was developed and used to calibrate runoff for each 8-digit watershed (within 20% of calibration target) and the partitioning of runoff into surface and sub-surface flow components (within 10% of calibration target). Streamflow was validated at selected gauging stations along major rivers within the river basin with a target R2 of >0.6 and Nash and Sutcliffe Efficiency of >0.5. The study area covered the entire Mississippi and Atchafalaya River Basin (MARB). Based on the results obtained, our analysis pointed out multiple challenges to calibration such as: (1) availability of good quality data, (2) accounting for multiple reservoirs within a sub-watershed, (3) inadequate accounting of elevation and slopes in mountainous regions, (4) poor representation of carrying capacity of channels, (5) inadequate capturing of the irrigation return flows, (6) inadequate representation of vegetative cover, and (7) poor representation of water abstractions (both surface and groundwater). Additional outstanding challenges to large-scale hydrologic model calibration were the coarse spatial scale of soils, land cover, and topography.


Sign in / Sign up

Export Citation Format

Share Document