Flow Features of Non-Newtonian Fluid Through a Paraboloid of Revolution

Author(s):  
Penumudi Naga Santoshi ◽  
Gurrampati Venkata Ramana Reddy ◽  
Polarapu Padma
Author(s):  
H C H Bandulasena ◽  
W B Zimmerman ◽  
J M Rees

The current paper presents a novel methodology for calculating the rheological para-meters for dilute aqueous solutions of a power-law non-Newtonian fluid, xanthan gum (XG). Previous studies have verified the fidelity of finite-element modelling of the Navier—Stokes equations for reproducing the velocity fields of XG solutions in a microfluidic T-junction with experimental observations obtained using micron resolution particle image velocimetry (μ-PIV). As the pressure-driven fluid is forced to turn the corner of the T-junction, a range of shear rates, and therefore viscosities, are produced within the flow system. Thus, a setup that potentially establishes the rheological profile of XG from a single experiment is selected. An inverse method based on finding the mapping between the statistical moments of the velocity field and the constitutive parameters of the viscosity profile demonstrated that such a system could potentially be used for the design of an efficient microfluidic rheometer. However, μ-PIV technology is expensive and the equipment is bulky. The current paper investigates whether different flow features could be used to establish the rheological profile.


2020 ◽  
Vol 25 (2) ◽  
pp. 254-261
Author(s):  
Naveed Ahmed ◽  
Ad nan ◽  
Umar Khan ◽  
Syed Tauseef Mohyud-Din ◽  
Ilyas Khan ◽  
...  

2012 ◽  
Vol 79 (4) ◽  
Author(s):  
Swati Mukhopadhyay ◽  
Kuppalapalle Vajravelu

The effect of transpiration on unsteady two-dimensional flow of an MHD non-Newtonian Maxwell fluid over a stretching surface in the presence of a heat source/sink is investigated. The upper convected Maxwell fluid model is used to characterize the non-Newtonian fluid behavior. Using a similarity transformation the governing partial differential equations of the problem are reduced to a system of ordinary differential equations (ODEs), and the ODEs are solved numerically by a shooting method. The flow features and the heat transfer characteristics are analyzed and discussed in detail for several sets of values of the governing parameters. Though the velocity of the fluid initially decreases with increasing unsteady parameter but it increases finally. Quite the opposite is true with the temperature. Furthermore, the velocity of the fluid decreases with an increasing magnetic or Maxwell parameter. But the temperature is enhanced with an increasing Maxwell parameter. It is observed that the effect of the transpiration is to decrease the fluid velocity as well as the temperature. The results obtained reveal many interesting behaviors that warrant further study of the equations related to non-Newtonian fluid phenomena, especially the shear-thinning phenomena. Shear thinning reduces the wall shear stress.


2011 ◽  
Vol 42 (3) ◽  
pp. 267-283
Author(s):  
Rehan Ali Shah ◽  
Saeed Islam ◽  
A. M. Siddiqui ◽  
Ishtiaq Ali ◽  
Manzoor Ellahi

Author(s):  
M. Zubair Akbar Qureshi ◽  
Kashif Ali ◽  
Muhammad Farooq Iqbal ◽  
Muhammad Ashraf

Sign in / Sign up

Export Citation Format

Share Document