scholarly journals Solution-Processed Transparent Conducting Electrodes for Flexible Organic Solar Cells with 16.61% Efficiency

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Juanyong Wan ◽  
Yonggao Xia ◽  
Junfeng Fang ◽  
Zhiguo Zhang ◽  
Bingang Xu ◽  
...  

AbstractNonfullerene organic solar cells (OSCs) have achieved breakthrough with pushing the efficiency exceeding 17%. While this shed light on OSC commercialization, high-performance flexible OSCs should be pursued through solution manufacturing. Herein, we report a solution-processed flexible OSC based on a transparent conducting PEDOT:PSS anode doped with trifluoromethanesulfonic acid (CF3SO3H). Through a low-concentration and low-temperature CF3SO3H doping, the conducting polymer anodes exhibited a main sheet resistance of 35 Ω sq−1 (minimum value: 32 Ω sq−1), a raised work function (≈ 5.0 eV), a superior wettability, and a high electrical stability. The high work function minimized the energy level mismatch among the anodes, hole-transporting layers and electron-donors of the active layers, thereby leading to an enhanced carrier extraction. The solution-processed flexible OSCs yielded a record-high efficiency of 16.41% (maximum value: 16.61%). Besides, the flexible OSCs afforded the 1000 cyclic bending tests at the radius of 1.5 mm and the long-time thermal treatments at 85 °C, demonstrating a high flexibility and a good thermal stability.

2016 ◽  
Vol 4 (48) ◽  
pp. 18931-18941 ◽  
Author(s):  
Daobin Yang ◽  
Hisahiro Sasabe ◽  
Yan Jiao ◽  
Taojun Zhuang ◽  
Yan Huang ◽  
...  

A π-extension strategy is an effective way for squaraines for achieving high-performance photovoltaic materials capable of showing much enhanced hole mobility.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
S. Wageh ◽  
Mahfoudh Raïssi ◽  
Thomas Berthelot ◽  
Matthieu Laurent ◽  
Didier Rousseau ◽  
...  

AbstractPoly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) mixed with single-wall nanotubes (SWNTs) (10:1) and doped with (0.1 M) perchloric acid (HClO4) in a solution-processed film, working as an excellent thin transparent conducting film (TCF) in organic solar cells, was investigated. This new electrode structure can be an outstanding substitute for conventional indium tin oxide (ITO) for applications in flexible solar cells due to the potential of attaining high transparency with enhanced conductivity, good flexibility, and good durability via a low-cost process over a large area. In addition, solution-processed vanadium oxide (VOx) doped with a small amount of PEDOT-PSS(PH1000) can be applied as a hole transport layer (HTL) for achieving high efficiency and stability. From these viewpoints, we investigate the benefit of using printed SWNTs-PEDOT-PSS doped with HClO4 as a transparent conducting electrode in a flexible organic solar cell. Additionally, we applied a VOx-PEDOT-PSS thin film as a hole transporting layer and a blend of PTB7 (polythieno[3,4-b] thiophene/benzodithiophene): PC71BM (phenyl-C71-butyric acid methyl ester) as an active layer in devices. Zinc oxide (ZnO) nanoparticles were applied as an electron transport layer and Ag was used as the top electrode. The proposed solar cell structure showed an enhancement in short-circuit current, power conversion efficiency, and stability relative to a conventional cell based on ITO. This result suggests a great carrier injection throughout the interfacial layer, high conductivity and transparency, as well as firm adherence for the new electrode.


2019 ◽  
Vol 31 ◽  
pp. 27-33 ◽  
Author(s):  
Hua Tan ◽  
Baoqi Wu ◽  
Jun Zhang ◽  
Qiang Tao ◽  
Wenhong Peng ◽  
...  

2017 ◽  
Vol 41 (10) ◽  
pp. 3857-3864 ◽  
Author(s):  
Qing-Qing Pan ◽  
Shuang-Bao Li ◽  
Yong Wu ◽  
Ji Zhang ◽  
Hai-Bin Li ◽  
...  

DFT and TDDFT calculations were performed to search for high-performance non-fullerene organic acceptor materials in organic solar cells.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingnan Wu ◽  
Guangwei Li ◽  
Jin Fang ◽  
Xia Guo ◽  
Lei Zhu ◽  
...  

Abstract Developing a high-performance donor polymer is critical for achieving efficient non-fullerene organic solar cells (OSCs). Currently, most high-efficiency OSCs are based on a donor polymer named PM6, unfortunately, whose performance is highly sensitive to its molecular weight and thus has significant batch-to-batch variations. Here we report a donor polymer (named PM1) based on a random ternary polymerization strategy that enables highly efficient non-fullerene OSCs with efficiencies reaching 17.6%. Importantly, the PM1 polymer exhibits excellent batch-to-batch reproducibility. By including 20% of a weak electron-withdrawing thiophene-thiazolothiazole (TTz) into the PM6 polymer backbone, the resulting polymer (PM1) can maintain the positive effects (such as downshifted energy level and reduced miscibility) while minimize the negative ones (including reduced temperature-dependent aggregation property). With higher performance and greater synthesis reproducibility, the PM1 polymer has the promise to become the work-horse material for the non-fullerene OSC community.


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Ruimin Zhou ◽  
Zhaoyan Jiang ◽  
Chen Yang ◽  
Jianwei Yu ◽  
Jirui Feng ◽  
...  

AbstractThe high efficiency all-small-molecule organic solar cells (OSCs) normally require optimized morphology in their bulk heterojunction active layers. Herein, a small-molecule donor is designed and synthesized, and single-crystal structural analyses reveal its explicit molecular planarity and compact intermolecular packing. A promising narrow bandgap small-molecule with absorption edge of more than 930 nm along with our home-designed small molecule is selected as electron acceptors. To the best of our knowledge, the binary all-small-molecule OSCs achieve the highest efficiency of 14.34% by optimizing their hierarchical morphologies, in which the donor or acceptor rich domains with size up to ca. 70 nm, and the donor crystals of tens of nanometers, together with the donor-acceptor blending, are proved coexisting in the hierarchical large domain. All-small-molecule photovoltaic system shows its promising for high performance OSCs, and our study is likely to lead to insights in relations between bulk heterojunction structure and photovoltaic performance.


RSC Advances ◽  
2019 ◽  
Vol 9 (36) ◽  
pp. 20733-20741 ◽  
Author(s):  
HyunKyung Lee ◽  
Sora Oh ◽  
Chang Eun Song ◽  
Hang Ken Lee ◽  
Sang Kyu Lee ◽  
...  

A 3D-shaped SF-HR was designed and synthesized for use in non-fullerene organic solar cells. Owing to the aligned energy levels, the P3HT:SF-HR system exhibited a high efficiency of 4.01% with good thermal stability and photostability.


2015 ◽  
Vol 19 ◽  
pp. 98-104 ◽  
Author(s):  
Yi Zuo ◽  
Qiang Zhang ◽  
Xiangjian Wan ◽  
Miaomiao Li ◽  
Huijing Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document