dft and tddft calculations
Recently Published Documents


TOTAL DOCUMENTS

22
(FIVE YEARS 8)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Aristides Zdetsis

Rationalization of energy gaps of atomically precise AGNRs, “bulk” (ΔΕac) or “zigzag-end” (ΔΕzz), could be challenging and controversial concerning their magnitude, origin, substrate influence (ΔΕsb), and spin-polarization, among others. Hereby, a simple self-consistent and “economical” interpretation is presented, based on “appropriate” DFT (and TDDFT) calculations, general symmetry principles, and plausibility arguments, which is fully consistent with current experimental measurements for 5-, 7-, and 9-AGNRs within less than 1%, although at variance with some prevailing views or interpretations for ΔΕac, ΔΕzz, and ΔΕsb. Thus, an excellent agreement between experiment and theory emerges, provided some established stereotypes are reconsidered and/or abandoned. The primary source of discrepancies is the finite length of AGNRs together with inversion-symmetry conflict and topological end/edge states, which invariably mix with other “bulk” states making their unambiguous detection/distinction difficult. This can be further tested by eliminating end-states (and ΔΕzz), by eliminating empty (non-aromatic) end-rings


2021 ◽  
Author(s):  
Jannik Brückmann ◽  
Carolin Müller ◽  
Tamar Maisuradze ◽  
Alexander Mengele ◽  
Djawed Nauroozi ◽  
...  

Using a dehydrogenative chemistry on the complex approach, a new polypyridine bridging ligand that bridges the gap of already existing systems is synthesized. By the usage of versatile cross-coupling reactions two different coordination spheres are included in the ligand architecture. Due to the twisted geometry of the novel ditopic ligand, the resultant division of the ligand in two distinct subunits leads to steady state as well as excited state properties of the corresponding mononuclear Ru(II) polypyridine complex resembling those of prototype [Ru(bpy)3]2+ (bpy = 2,2´-bipyridine). The localization of the initially optically excited and the nature of the long-lived excited states on the Ru-facing ligand spheres is evaluated by resonance Raman and fs-TA spectroscopy, respectively, and supported by DFT and TDDFT calculations. Coordination of a second metal (Zn or Rh) to the available bis-pyrimidyl-like coordination sphere strongly influences the frontier molecular orbitals apparent by e.g., luminescence quenching. Thus, the new bridging ligand motif offers electronic properties which can be adjusted by the nature of the second metal center. Using the heterodinuclear Ru-Rh complex, visible light-driven reduction of NAD+ to NADH was achieved, highlighting the potential of this system for photocatalytic applications.


2021 ◽  
Author(s):  
Jannik Brückmann ◽  
Carolin Müller ◽  
Tamar Maisuradze ◽  
Alexander Mengele ◽  
Djawed Nauroozi ◽  
...  

Using a dehydrogenative chemistry on the complex approach, a new polypyridine bridging ligand that bridges the gap of already existing systems is synthesized. By the usage of versatile cross-coupling reactions two different coordination spheres are included in the ligand architecture. Due to the twisted geometry of the novel ditopic ligand, the resultant division of the ligand in two distinct subunits leads to steady state as well as excited state properties of the corresponding mononuclear Ru(II) polypyridine complex resembling those of prototype [Ru(bpy)3]2+ (bpy = 2,2´-bipyridine). The localization of the initially optically excited and the nature of the long-lived excited states on the Ru-facing ligand spheres is evaluated by resonance Raman and fs-TA spectroscopy, respectively, and supported by DFT and TDDFT calculations. Coordination of a second metal (Zn or Rh) to the available bis-pyrimidyl-like coordination sphere strongly influences the frontier molecular orbitals apparent by e.g., luminescence quenching. Thus, the new bridging ligand motif offers electronic properties which can be adjusted by the nature of the second metal center. Using the heterodinuclear Ru-Rh complex, visible light-driven reduction of NAD+ to NADH was achieved, highlighting the potential of this system for photocatalytic applications.


2020 ◽  
Vol 17 ◽  
Author(s):  
Fatemeh Azarakhshi ◽  
Siyamak Shahab ◽  
Sadegh Kaviani ◽  
Masoome Sheikhi

: In current work, the adsorption of Sulfanilamide (SLF) drug over B12N12 and Al12N12 fullerenes was studied using DFT and TDDFT calculations at the M06-2X/6-31+G** level in the solvent water for the first time. The adsorption effect of the SLF on the bonds length, electronic properties such as charge analysis, frontier molecular orbital (FMO), dipole moment and optical properties of B12N12 and Al12N12 fullerenes was investigated. The UV absorption spectra were calculated for study the significant changes are taking place in interactions between SLF and B12N12 and Al12N12 fullerenes. According to charge analysis, it is found that charge transfer occurs from SLF drug to fullerenes and from fullerene to SLF drug. The analysis of the LOL and ELF was shown the N-B and O-B bonds are greater than the other bonds, representing higher electron density localization and stronger covalent characteristic. The adsorption of the SLF from the head of N atom of sulfonamide group on the surface of B12N12 with the lower energy gap (EG) was more considerable than the head O atom and the N atom of NH2-Ar group. It is found that the applied B12N12 fullerene can be suitable as a drug carrier for the delivery of SLF drug.


2020 ◽  
Vol 52 (11) ◽  
pp. 725-734
Author(s):  
Sima Sedighi ◽  
Mohammad T. Baei ◽  
Masoud Javan ◽  
Joshua Charles Ince ◽  
Alireza Soltani ◽  
...  

Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3501
Author(s):  
Desislava Staneva ◽  
Silvia Angelova ◽  
Ivo Grabchev

In this study, a novel 6-(allylamino)-2-(2-(dimethylamino)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI3) was synthesized and characterized. Its copolymer with styrene was also obtained. The photophysical characteristics of NI3 were investigated in organic solvents and the results were compared with those of its structural analogue, 2-allyl-6-((2-(dimethylamino)ethyl)amino)-1H-benzo[de]isoquinoline-1,3(2H)-dione (NI4). The influences of the pH in the medium and different metal ions on the fluorescent intensity of monomers and polymers were also investigated. Computational tools (DFT and TDDFT calculations) were employed when studying the structure and properties of the 1,8-naphthalimide-based chromophores. Although the position of the N,N-dimethylaminoethylamine receptor fragment did not significantly impact proton detection, it was still important for detecting metal ion sensor ability, especially for monomeric 1,8-naphthalimide structures and their copolymers with styrene.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 259
Author(s):  
Mohammad Usman ◽  
Rais Ahmad Khan ◽  
Ali Alsalme ◽  
Walaa Alharbi ◽  
Khadijah H. Alharbi ◽  
...  

The Zn(II) complex of salen-like scaffold [Zn(sal)](H2O) was synthesized and characterized by elemental analysis, IR, UV–Vis, and 1H-NMR spectroscopic techniques. The structure of complex was confirmed by single crystal X-ray diffraction studies. In the complex, Zn (II) was placed in the inner N2O2 compartment of the salen scaffold in square planar geometry and crystallized in the monoclinic space group P21/n. DFT and TDDFT calculations were performed to reproduce the experimentally observed structural and spectroscopic (IR and UV–vis) findings. The bonding of the Zn(II) framework in the [Zn(sal)](H2O) complex was explored in depth. The theoretical approaches employed were perturbation theory within the context of the natural bond orbital (NBO) framework, and quantum theory of atoms in molecule (QTAIM) and electron localization function (ELF) analysis. The study begins by delineating the difference between the NBO and QTAIM approaches. This paper thus exhibits the supportive nature of NBO theory and QTAIM in discussion of the bonding in the [Zn(sal)](H2O) complex, when both the methodologies are used in combination.


2017 ◽  
Vol 13 ◽  
pp. 2902-2914 ◽  
Author(s):  
Aleksey A Vasilev ◽  
Meglena I Kandinska ◽  
Stanimir S Stoyanov ◽  
Stanislava B Yordanova ◽  
David Sucunza ◽  
...  

Novel asymmetric monomeric monomethine cyanine dyes 5a–d, which are analogues of the commercial dsDNA fluorescence binder thiazole orange (TO), have been synthesized. The synthesis was achieved by using a simple, efficient and environmetally benign synthetic procedure to obtain these cationic dyes in good to excellent yields. Interactions of the new derivatives of TO with dsDNA have been investigated by absorption and fluorescence spectroscopy. The longest wavelength absorption bands in the UV–vis spectra of the target compounds are in the range of 509–519 nm and these are characterized by high molar absorptivities (63000–91480 L·mol−1·cm−1). All investigated dyes from the series are either not fluorescent or their fluorescence is quite low, but they become strongly fluorescent after binding to dsDNA. The influence of the substituents attached to the chromophores was investigated by combination of spectroscopic (UV–vis and fluorescence spectroscopy) and theoretical (DFT and TDDFT calculations) methods.


2017 ◽  
Vol 41 (10) ◽  
pp. 3857-3864 ◽  
Author(s):  
Qing-Qing Pan ◽  
Shuang-Bao Li ◽  
Yong Wu ◽  
Ji Zhang ◽  
Hai-Bin Li ◽  
...  

DFT and TDDFT calculations were performed to search for high-performance non-fullerene organic acceptor materials in organic solar cells.


Sign in / Sign up

Export Citation Format

Share Document