Three-Dimensional Reconstruction and Visualization of Human Enamel Ex Vivo Using High-Frequency Ultrasound

2017 ◽  
Vol 37 (1) ◽  
pp. 112-122 ◽  
Author(s):  
Juan Du ◽  
Xue-Li Mao ◽  
Peng-Fei Ye ◽  
Qing-Hua Huang
2019 ◽  
Vol 66 (12) ◽  
pp. 3426-3435
Author(s):  
Fang-Yi Lay ◽  
Pei-Yu Chen ◽  
Hsiang-Fan Cheng ◽  
Yu-Min Kuo ◽  
Chih-Chung Huang

2017 ◽  
Vol 141 (5) ◽  
pp. 3492-3492
Author(s):  
Christine E. Dalton ◽  
Zachary A. Coffman ◽  
Garrett Wagner ◽  
Timothy E. Doyle

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kornelia Schuetzenberger ◽  
Martin Pfister ◽  
Alina Messner ◽  
Vanessa Froehlich ◽  
Gerhard Garhoefer ◽  
...  

Abstract Optical coherence tomography (OCT) and high-frequency ultrasound (HFUS), two established imaging modalities in the field of dermatology, were evaluated and compared regarding their applicability for visualization of skin tissue morphology and quantification of murine intradermal structures. The accuracy and reproducibility of both methods were assessed ex vivo and in vivo using a standardized model for intradermal volumes based on injected soft tissue fillers. OCT revealed greater detail in skin morphology, allowing for detection of single layers due to the superior resolution. Volumetric data measured by OCT (7.9 ± 0.3 μl) and HFUS (7.7 ± 0.5 μl) were in good agreement and revealed a high accuracy when compared to the injected volume of 7.98 ± 0.8 µl. In vivo, OCT provided a higher precision (relative SD: 26% OCT vs. 42% HFUS) for the quantification of intradermal structures, whereas HFUS offered increased penetration depth enabling the visualization of deeper structures. A combination of both imaging technologies might be valuable for tumor assessments or other dermal pathologies in clinical settings.


2020 ◽  
Author(s):  
Azaam Aziz ◽  
Joost Holthof ◽  
Sandra Meyer ◽  
Oliver G. Schmidt ◽  
Mariana Medina-Sánchez

AbstractThe fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic (PA) tomography has shown to be promising for the imaging of microrobots in deep-tissue (ex vivo and in vivo), as it possesses the molecular specificity of optical techniques and the penetration depth of ultrasound imaging. However, the precise maneuvering and function control of microrobots, in particular in living organisms, demand the combination of both anatomical and functional imaging methods. Therefore, herein, we report the use of a hybrid High-Frequency Ultrasound (HFUS) and PA imaging system for the real-time tracking of magnetically driven micromotors (single and swarms) in phantoms, ex vivo, and in vivo (in mice bladder and uterus), envisioning their application for targeted drug-delivery.


2012 ◽  
Vol 131 (4) ◽  
pp. 3524-3524
Author(s):  
Jonathan Mamou ◽  
Alain Coron ◽  
Emi Saegusa-Beecroft ◽  
Masaki Hata ◽  
Michael L. Oelze ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document