Investigation of pore pressure, in-situ stress state and borehole stability in the West and South Al-Khilala hydrocarbon fields, Nile Delta, Egypt

Author(s):  
Mahmoud Leila ◽  
Souvik Sen ◽  
Mohamed Abioui ◽  
Andrea Moscariello
2021 ◽  
Author(s):  
Takuma Kaneshima ◽  
Fuqiao Bai ◽  
Nobuo Morita

Abstract Borehole stability depends on various parameters such as rock strength, rock deformations, in-situ stress, borehole trajectory, shale swelling, pore pressure change due to osmosis, overbalance mud weight and temperature. The objective of this work is to construct analytical and numerical equations to predict borehole failure including all these parameters, and to comprehensively propose a methodology to improve the borehole stability. Analytical solutions are developed for inclined wells with respect to in-situ stress, shale swelling, pore pressure change due to osmosis, overbalance mud weight and temperature. A numerical model is developed for 3D inclined wells with orthotropic formation and layered formation. Using the analytical and the numerical models, stress state around inclined wells are evaluated. The breakout angle is predicted based on Mohr-Coulomb, Mogi, Lade and Drucker-Prager failure theories. Polar diagrams of mud weights are compared to judge the effect of each parameter and the magnitude predicted by the different failure theories. Shale swelling and pore pressure change due to osmosis are the most difficult to estimate among above-mentioned parameters. The laboratory measured swelling of cores obtained from various formations showed that the magnitude to induce breakouts caused by swelling was the largest comparing with other parameters. Therefore, when shale stability problems occur, we need to estimate the magnitude of shale swelling and osmosis due to water potential difference. Then, to overcome the shale stability problem, we evaluated the sensitivity of human controllable parameters on borehole stability. The parameters which can be controlled by drilling engineers are overbalance, type of mud, borehole temperature and borehole trajectory. If the shale swelling is small, the borehole stability is improved by the mud weight. However, from the swelling tests from the cores of Nankai-Trough, we estimated unless we used a swelling inhibitor to reduce the swelling less than 0.1%, the well was not possible to drill through. Actually, the well was abandoned due to instability after trying side track several times. Unlike previous works, this paper uses all important parameters (swelling, temperature, pore pressure, orthotropic formation, layered formation) to estimate the stresses around inclined wells with the same formation conditions for quantitative analysis. Failure analysis include Mohr, Mogi, Lade and Drucker-Prager. Finally, the polar diagrams of critical mud weight are used to judge whether we can choose well trajectory, orientation with respect to bedding planes, mud weight, shale inhibitor, and temperature to stabilize the borehole.


Author(s):  
Eva Lopez-Puiggene ◽  
Nubia Aurora Gonzalez-Molano ◽  
Jose Alvarellos-Iglesias ◽  
Jose M. Segura ◽  
M. R. Lakshmikantha

Solids/sand production is an unintended byproduct of the hydrocarbon production that, from an operational point of view, might potentially lead to undesirable consequences. This paper focuses on a study centered in the geomechanical perspective for solids production. An integrated workflow is presented to analyze the combined effect of reservoir pore-pressure, drawdown, in-situ stress, rock properties and well/perforations orientation on the onset of solid production. This workflow incorporates analyses at multiple scales: rock constitutive modeling at lab scale, 1D geomechanical models at wellbore scale along well trajectories, a 3D geomechanical model at the reservoir scale and 3D/4D high resolution reservoir - geomechanical coupled models at the well and perforation scale. 1D geomechanical models were built using log and field data, drilling experience and laboratory tests in order to characterize in situ stresses, pore pressure and rock mechanics properties (stiffness and strength) profiles for several wells. Rock shear failure mechanism was also analyzed in order to build a pre-drill model and evaluate the wellbore stability from a geomechanical point of view. Pre-production stress modeling was simulated to obtain a representative initial stress state integrating 1D geomechanics well results, 3D dynamic model and seismic interpretations. Mechanical properties were distributed considering properties calculated in the 1D geomechanical models as input. 3D stress field was validated with in-situ stress profiles from 1D modeling results. This simulated pre-production stress state was then used as an initial condition for the reservoir - geomechanical coupled simulations. Effective stress changes and deformations associated to pore pressure changes were calculated including the coupling between reservoir and geomechanical modeling. Finally, a 3D/4D high resolution well scale reservoir - geomechanical coupled numerical model was built in order to determine the threshold of sand production. A limit of plastic strain was obtained based on numerical simulations of available production data, DST and ATWC tests. This critical plastic strain limit was used as a criterion (strain-based) for rock failure to define the onset of sand production as a function of pore pressure, perforation orientation and rock strength. Conclusions regarding the perforation orientations related to the possibility of producing solids can support operational decisions in order to avoid undesirable solid production and therefore optimize the production facilities capacity and design to handle large amounts of solids and/or the clogging of the well.


2011 ◽  
Vol 12 (9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Takeshi Tsuji ◽  
Ryota Hino ◽  
Yoshinori Sanada ◽  
Kiyohiko Yamamoto ◽  
Jin-Oh Park ◽  
...  

2010 ◽  
pp. 375-380
Author(s):  
J Han ◽  
P Zhang ◽  
X Tian ◽  
S Sun ◽  
H Zhang ◽  
...  

Rock Stress ◽  
2020 ◽  
pp. 389-394
Author(s):  
H. Watanabe ◽  
H. Tano ◽  
Ö. Aydan ◽  
R. Ulusay ◽  
E. Tuncay ◽  
...  

2010 ◽  
pp. 345-350
Author(s):  
C Zhang ◽  
X Feng ◽  
H Zhou ◽  
C Zhang ◽  
S Wu

1992 ◽  
Vol 5 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Jianli Gao ◽  
Jianmin Ding ◽  
Guoping Liang ◽  
Dahuang Xia ◽  
Qiliang Guo
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document