scholarly journals Explicit dynamics based numerical simulation approach for assessment of impact of relief hole on blast induced deformation pattern in an underground face blast

Author(s):  
Vivek K. Himanshu ◽  
A. K. Mishra ◽  
Ashish K. Vishwakarma ◽  
M. P. Roy ◽  
P. K. Singh
2021 ◽  
Author(s):  
VIVEK HIMANSHU ◽  
A K Mishra ◽  
Ashish K Vishwakarma ◽  
M P Roy ◽  
P K Singh

Abstract The breakage of rock mass by blasting has many challenges. The optimal breakage in an underground development face/tunnel blast is dominantly dependent on the relief area provided to the blast holes. The cut portion in the burn cut face blast is significantly important to achieve the controlled deformation due to the blast. This paper has discussed the impact of the number and diameter of the relief holes on the breakage pattern of the rock. The numerical simulation with varying numbers and diameter of relief hole was carried out for this purpose. Finite element modeller explicit dynamics of Ansys-Autodyn was used for the simulation work. The isosurface of non-deformed zone was plotted to compare the extent of deformation under varying conditions of relief holes. The analysis shows that the higher number of relief holes with optimum diameter gives more controlled deformation than single relief hole with larger diameter. The nearfield vibration was also recorded by placement of seismograph. The waveform analysis of the recorded vibration was carried out. The redesigning of the blasting pattern was done using the results of numerical simulation and waveform analysis. The redesigned pattern consists of four relief holes of 115 mm diameter. The blasting output with the revised design has resulted into the considerable improvements in the pull and reduction of overbreak. The revised pattern has addressed the issue of the socket formation at the site.


Author(s):  
Vivek K. Himanshu ◽  
A.K. Mishra ◽  
M.P. Roy ◽  
Ashish K. Vishwakarma ◽  
P.K. Singh

2012 ◽  
Vol 569 ◽  
pp. 395-399
Author(s):  
Jing Zhao ◽  
Guo Yu Wang ◽  
Yan Zhao ◽  
Yue Ju Liu

A numerical simulation approach of ventilated cavity considering the compressibility of gases is established in this paper, introducing the gas state equation into the calculation of ventilated supercavitating flow. Based on the comparison of computing results and experimental data, we analyzes the differences between ventilated cavitating flow fields with and without considered the compressibility of gases. The effect of ventilation on the ventilated supercavitating flow field structure is discussed considering the compressibility of gases. The results show that the simulation data of cavity form and resistance, which takes the compressibility of gases into account, accord well with the experimental ones. With the raising of ventilation temperature, the gas fraction in the front cavity and the gas velocity in the cavity increase, and the cavity becomes flat. The resistance becomes lower at high ventilation temperature, but its fluctuation range becomes larger than that at low temperature.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Qixin Zhu ◽  
Hongli Liu ◽  
Yiyi Yin ◽  
Lei Xiong ◽  
Yonghong Zhu

Mechanical resonance is one of the most pervasive problems in servo control. Closed-loop simulations are requisite when the servo control system with high accuracy is designed. The mathematical model of resonance mode must be considered when the closed-loop simulations of servo systems are done. There will be a big difference between the simulation results and the real actualities of servo systems when the resonance mode is not considered in simulations. Firstly, the mathematical model of resonance mode is introduced in this paper. This model can be perceived as a product of a differentiation element and an oscillating element. Secondly, the second-order differentiation element is proposed to simulate the resonant part and the oscillating element is proposed to simulate the antiresonant part. Thirdly, the simulation approach for two resonance modes in servo systems is proposed. Similarly, this approach can be extended to the simulation of three or even more resonances in servo systems. Finally, two numerical simulation examples are given.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-21
Author(s):  
Rui Wang ◽  
Jian-biao Bai ◽  
Shuai Yan ◽  
Yuan-ba Song ◽  
Guang-dong Wang

Our goal was to develop an effective research tool for roadways with significant deformations supported by rock bolts. The improved numerical simulation approach is constructed through additional development of FLAC3D. The aim is to modify the shortcoming that the original model in FLAC3D regards the plastic tensile strain of any arbitrary rock bolt element node as the rupture discrimination criterion. The FISH programming language is adopted to conduct the secondary development and to embed the revised model into the main program of FLAC3D. Taking an actual mining roadway as the simulation object, two simulation schemes adopting the newly improved approach and the original method were conducted, respectively. The results show that (1) the PILE element that constitutes the rock bolt-free section with the maximum elongation rate ruptures after modification, while the rock bolt tendon elongation rate reaches beyond the predefined tensile rupture elongation rate; (2) the modified model in which the rock bolt is mainly subjected to tension realises the tensile rupture phenomenon at the end of the rock bolt-free section and the rock bolt at the junction between the free section and the anchoring section; and (3) only four rock bolts that are in the roadway sides showed rupture in the modified model, and all rock bolts showed rupture in the original model. The tensile failure of the rock bolt led that the modified model scheme is closer to the actual. Compared with the modified model, in the original model, deformation of the surrounding rock masses is severe. This is resulted by the rupture of all rock bolts in the original model. The analysis shows that the improved numerical simulation approach is much more reliable for large deformation roadway behavior with rock bolt support.


Sign in / Sign up

Export Citation Format

Share Document