rock bolt
Recently Published Documents


TOTAL DOCUMENTS

276
(FIVE YEARS 83)

H-INDEX

20
(FIVE YEARS 5)

Author(s):  
Prasoon Singh ◽  
Hyongdoo Jang ◽  
A. J. S. Sam Spearing

AbstractNumerical modelling has become an important tool in the underground rock bolt reinforcement designing process. Numerical modelling provides the advantage of easily and quickly simulating complex underground geometries and mechanisms with sensitivity analyses. However, a numerical model needs to be calibrated using mathematical solutions, lab testing or with actual in-situ observations and measurements (which is the preferred method) before its results can be quantitatively applied to reinforcement design. Instrumented rock bolts provide a useful data source for calibrating in-situ rock bolt models. In this work, procedures have been presented to identify and determine the orientation of structures in the rock mass based on the strains on the instrumented rock bolts. A method to calibrate the rock bolt model with in-situ data is also presented. The results of the presented procedures have been validated with laboratory tests and numerical modelling. The procedures have been applied to create and calibrate an in-situ rock bolt model in FLAC3D and the results are validated using in-situ data.


2022 ◽  
Vol 2160 (1) ◽  
pp. 012077
Author(s):  
Yanlong Ren ◽  
Xuanli Yang ◽  
Chang Li ◽  
Mingzhe Lü ◽  
Jinzhao Zhuang

Abstract The blasting tunneling construction method is often used in the underground engineering projects such as tunnels, coal mines roadway, chambers and so on, rock bolt and shotcrete support is used. Although the blasting construction method has many advantages, but also will be accompanied by adverse effects. Blasting vibration of blasting construction not only to the surrounding environment, building (structure) and other adverse effects, but also on the support of the underground project itself has a negative impact. In order to discuss the impact of blasting vibration on shotcrete and rock bolt support in the process of blasting tunneling of roadway, a certain amount of explosives is detonated in the hole of the working face, the finite element software ANSYS/LS-DYNA was used to establish the numerical calculation model, through time history analysis calculation, the distribution law of the vibration velocity on the shotcrete surface along the section and the variation law of the longitudinal tension and compression stress of the rock bolt are obtained. The results show that the blasting vibration produced by blasting tunneling has a great influence on the shotcrete at the shoulder, but little influence on the axial force of the rock bolt.


Mining ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 364-390
Author(s):  
Ndalamo Tshitema ◽  
Daramy Vandi Von Kallon

The demand for mineral resources has dramatically increased over the past few decades; this increase directly correlates to an increase in underground mining activity. There are different mining methods for different minerals, and each have their risks. In hard rock mining activities such as mining for gold, rockfalls are the most significant deterrent to obtaining mineral resources. This paper focuses on rock reinforcement systems to prevent fatal rockfalls in underground excavations. Presently, there is a global steel shortage and an increase in prices that has impacted the productivity of the mining operations that support most national economies. The paper’s main objective is to present the improvement of a rock bolt design used to support the roof in underground mining activities and keep working personnel and equipment safe from rockfalls. This study presents two rock bolt designs: a preliminary design and an improved model of the rock bolt. The paper discusses the operation of the rock bolt and provides laboratory test results on the bolt in operation. The principle of operation of the yield bolt is based on the science of radial expansion of hollow tubes in tension, to provide integrity to underground excavations. This functional design of the rock bolt requires less steel and has the same performance as the current rock reinforcement elongates. The research methodology involved interviewing rock mining engineers to determine their desired rock reinforcement device that would adequately meet the unpredictable dynamic and static behavior of underground rocks. The methodology also included experimental tests of a rock bolt design that was aimed at meeting the desired and acceptable performance determined from the interviews. The experimental results were obtained from a 60-ton hydraulic press that simulated seismic activity underground. The experimental results showed several modes of failure for the bolt; however, the improved rock bolt yielded at an average of 200 KN, as designed. During testing of the preliminary bolt design, there were failures that resulted from the manufacturing process of the bolt, such as splitting of the tube due to the welded end components. After a dynamic test, the preliminary bolt tube bent, creating huge forces on the tube which may cause fracture. The coefficient of friction during dynamic testing was lower than during static testing, leading to undesirable results for the preliminary bolt. The optimized bolt design addressed the failures and the low yield tonnage of the preliminary bolt design. It successfully yielded at 20 tons, even during the dynamic event. The bolt had similar alignment issues which caused failure during testing, as can be seen from the results. A guide tube was implemented in the design and the manufacturing process changed; these changes resulted in the bolt having a more reliable performance that met the requirements throughout.


2021 ◽  
Vol 15 (4) ◽  
pp. 8-14
Author(s):  
Oleksandr Krykovskyi ◽  
Viktoriia Krykovska ◽  
Serhii Skipochka

Purpose is to analyze changes in shape and dimensions of a rock mass area, fortified with the help of a polymer, depending upon the density of injection rock bolts as well as the value of initial permeability of enclosing rocks to substantiate optimum process solutions to support roofs within the unstable rocks and protect mine workings against water inflow and gas emission. Methods. Numerical modeling method for coupled processes of rock mass strain and filtration of liquid components of a polymer has been applied. The model is based upon fundamental ideas of mechanics of solids and filtration theory. The problem has been solved using a finite element method. Its solution took into consideration both the initial permeability and the permeability stipulated by mine working driving, injection time of reagents and their polymerization, and effect of po-lymer foaming in the process of mixing of its components. Changes in physicomechanical and filtration characteristics of rock mass during polymer hardening were simulated. It has been taken into consideration that a metal delivery pipe starts operating as a reinforcing support element only after the polymer hardening. Findings. If three and five injection rock bolts are installed within a mine working section then stresses, permeability coefficients, pressure of liquid polymeric composition, and geometry of the fortified area of rock mass have been calculated. It has been shown that rock bolt location is quite important to form a rock-bolt arch. It has been demonstrated for the assumed conditions that if five injection rock bolts are installed within the mine working roof then close interaction between rock-bolt supports takes place; moreover, the integral arch is formed within the mine working roof. Originality. Dependence of change in the polymer reinforced area upon a value of initial permeability of enclosing rocks has been derived. It has been shown that in terms of low values of initial permeability, geometry of rock-bolt supports as well as its size is identified only by means of a value of the unloaded zone around the mine working. In this context, initial permeabi-lity increase results in the enlarged diameter of the reinforced rock mass area in the neighbourhood of the injection rock bolt. Practical implications. The findings are recommended to be applied while improving a method to support the mine working roof and decrease water inflow as well as gas emission from the rocks, being undermined, into the working.


2021 ◽  
Author(s):  
Andrzej Staniek

The chapter presents a method for non-destructive identification of discontinuity of a resin layer (grout) surrounding rock bolts. The method uses modal analysis procedures and is based on an impact excitation where a response transducer is positioned at a visible part of a rock bolt. Since the installed rock bolt acts as an oscillator, its modal parameters are changed by different lengths and positions of grouting discontinuity. Thanks to proper extraction of these parameters, with a resonant frequency seen as the most valuable, the intended identification is possible. The measurements and analyses were performed in laboratory conditions and subsequently at experimental and working coal mines where the measurement system was verified. The developed finite element model of the system under test, rock bolt - resin - rock mass, may be used as reference data base for investigated rock bolts. The advantages of the method include plausibility of grouting discontinuity assessment at any time after its installation, a non-destructive character of the method and the fact that it is not necessary to install any additional equipment into a roof section. It enables a localization of a grout discontinuity, whether it is the back part or the front part of a rock bolt.


2021 ◽  
Vol 14 (21) ◽  
Author(s):  
Sahendra Ram ◽  
Arun Kumar Singh ◽  
Rakesh Kumar ◽  
Ashok Kumar ◽  
Niraj Kumar ◽  
...  
Keyword(s):  

2021 ◽  
Vol 9 (1) ◽  
pp. 73-87
Author(s):  
La Ode Dzakir ◽  
Made Astawa Rai ◽  
Nuhindro Priagung Widodo

The effects of reinforcement system on pillars were tested in laboratory, using three types of pillars with different strengths. The tests were performed using the UCS machine, to test pillar without reinforcement, pillar with rock bolt reinforcement, pillar with shotcrete reinforcement and pillar with the combination of both rock bolt and shotcrete reinforcement. Uniaxial compressive strength (UCS) testing aims to determine the effects of the reinforcement system on pillar strength. The results of this study indicate that the reinforcement system on high strength pillars causes a strength increase of 14.93% on pillar with rock bolt reinforcement, 21.45% on pillar with shotcrete reinforcement and 34.67% on pillar with combination of rock bolt and shotcrete reinforcement. On medium strength pillars, reinforcement installation shows a strength increase of 16.27% on pillar with reinforced rock bolt, 19.83% on pillar with reinforced shotcrete and 44.40% on pillar with combination of rock bolt and shotcrete reinforcement. Likewise, on low strength pillars, reinforcement installation causes a strength increase of 13.13% on pillar with reinforced rock bolt, 36.21% on pillar with reinforced shotcrete and 53.85% on pillar with combination of rock bolt and shotcrete reinforcement. The results of laboratory testing and numerical modeling indicate that the increase in strength occurs because the horizontal displacement on the surface of the pillar wall is detained by shotcrete and faceplate on rock bolt, so that the pillar seems to have confining pressure throughout the pillar wall surface, which is called as equivalent confining pressure.


Author(s):  
Jucai Chang ◽  
Kai He ◽  
Dongdong Pang ◽  
Dong Li ◽  
Chuanming Li ◽  
...  

AbstractIn coal mining roadway support design, the working resistance of the rock bolt is the key factor affecting its maximum support load. Effective improvement of the working resistance is of great significance to roadway support. Based on the rock bolt’s tensile characteristics and the mining roadway surrounding rock deformation, a mechanical model for calculating the working resistance of the rock bolt was established and solved. Taking the mining roadway of the 17102 (3) working face at the Panji No. 3 Coal Mine of China as a research site, with a quadrilateral section roadway, the influence of pretension and anchorage length on the working resistance of high-strength and ordinary rock bolts in the middle and corner of the roadway is studied. The results show that when the bolt is in the elastic stage, increasing the pretension and anchorage length can effectively improve the working resistance. When the bolt is in the yield and strain-strengthening stages, increasing the pretension and anchorage length cannot effectively improve the working resistance. The influence of pretension and anchorage length on the ordinary and high-strength bolts is similar. The ordinary bolt’s working resistance is approximately 25 kN less than that of the high-strength bolt. When pretension and anchorage length are considered separately, the best pretensions of the high-strength bolt in the middle of the roadway side and the roadway corner are 41.55 and 104.26 kN, respectively, and the best anchorage lengths are 1.54 and 2.12 m, respectively. The best anchorage length of the ordinary bolt is the same as that of the high-strength bolt, and the best pretension for the ordinary bolt in the middle of the roadway side and at the roadway corner is 33.51 and 85.12 kN, respectively. The research results can provide a theoretical basis for supporting the design of quadrilateral mining roadways.


Sign in / Sign up

Export Citation Format

Share Document