Heat Treatment of 17–4 PH Stainless Steel Produced by Binder Jet Additive Manufacturing (BJAM) from N2-Atomized Powder

Author(s):  
Daniel Huber ◽  
Philipp Stich ◽  
Alfons Fischer
2019 ◽  
Vol 822 ◽  
pp. 563-568
Author(s):  
Vadim Sufiiarov ◽  
Evgenii Borisov ◽  
Igor A. Polozov

The article presents the results of a study on the additive manufacturing of functional graded steel parts. Studies have been carried out on the possibility of growing blanks from two steels simultaneously – tool steel H13 and stainless steel 316L. The study of the microstructure of the transition from one steel to another showed that the transition layer is smooth and is about 200 microns thick. The mechanical properties in the transition layer are distributed over the gradient and smoothly change from one material to another. The structure and properties of the transition layer after heat treatment and hot isostatic pressing are shown.


Procedia CIRP ◽  
2021 ◽  
Vol 104 ◽  
pp. 935-938
Author(s):  
M.A. Bouaziz ◽  
J. Marae Djouda ◽  
M. Chemkhi ◽  
M. Rambaudon ◽  
J. Kauffmann ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7170
Author(s):  
Amir Baghdadchi ◽  
Vahid A. Hosseini ◽  
Maria Asuncion Valiente Bermejo ◽  
Björn Axelsson ◽  
Ebrahim Harati ◽  
...  

A systematic four-stage methodology was developed and applied to the Laser Metal Deposition with Wire (LMDw) of a duplex stainless steel (DSS) cylinder > 20 kg. In the four stages, single-bead passes, a single-bead wall, a block, and finally a cylinder were produced. This stepwise approach allowed the development of LMDw process parameters and control systems while the volume of deposited material and the geometrical complexity of components increased. The as-deposited microstructure was inhomogeneous and repetitive, consisting of highly ferritic regions with nitrides and regions with high fractions of austenite. However, there were no cracks or lack of fusion defects; there were only some small pores, and strength and toughness were comparable to those of the corresponding steel grade. A heat treatment for 1 h at 1100 °C was performed to homogenize the microstructure, remove nitrides, and balance the ferrite and austenite fractions compensating for nitrogen loss occurring during LMDw. The heat treatment increased toughness and ductility and decreased strength, but these still matched steel properties. It was concluded that implementing a systematic methodology with a stepwise increase in the deposited volume and geometrical complexity is a cost-effective way of developing additive manufacturing procedures for the production of significantly sized metallic components.


Sign in / Sign up

Export Citation Format

Share Document