Energetic and Exergetic Optimization of a Combined Cycle Power Plant with Dual-Pressure HRSG, Compressed Air Cooling, Steam Injection and Vapor Extraction Systems

Author(s):  
Nihed Kilani ◽  
Tahar Khir ◽  
Ammar Ben Brahim
Author(s):  
Anoop Kumar Shukla ◽  
Onkar Singh

Gas/steam combined cycle power plants are extensively used for power generation across the world. Today’s power plant operators are persistently requesting enhancement in performance. As a result, the rigour of thermodynamic design and optimization has grown tremendously. To enhance the gas turbine thermal efficiency and specific power output, the research and development work has centered on improving firing temperature, cycle pressure ratio, adopting improved component design, cooling and combustion technologies, and advanced materials and employing integrated system (e.g. combined cycles, intercooling, recuperation, reheat, chemical recuperation). In this paper a study is conducted for combining three systems namely inlet fogging, steam injection in combustor, and film cooling of gas turbine blade for performance enhancement of gas/steam combined cycle power plant. The evaluation of the integrated effect of inlet fogging, steam injection and film cooling on the gas turbine cycle performance is undertaken here. Study involves thermodynamic modeling of gas/steam combined cycle system based on the first law of thermodynamics. The results obtained based on modeling have been presented and analyzed through graphical depiction of variations in efficiency, specific work output, cycle pressure ratio, inlet air temperature & density variation, turbine inlet temperature, specific fuel consumption etc.


Author(s):  
Mihir Acharya ◽  
Lalatendu Pattanayak ◽  
Hemant Gajjar ◽  
Frank Elbracht ◽  
Sandeep Asthana

With gas becoming a fuel of choice for clean energy, Liquefied Natural Gas (LNG) is being transported and re-gasification terminals are being set up at several locations. Re-gasification of LNG leads to availability of considerable cold-energy which can be utilized to gain power and efficiency in a Gas Turbine (GT) based Power Plant. With a number of LNG Re-gasification Terminals coming up in India & around the globe, setting up of a high efficiency CCPP adjacent to the terminal considering utilization of the cold energy to augment its performance, and also save energy towards re-gasification of LNG, provides a feasible business opportunity. Thermodynamic analysis and major applications of the LNG re-gasification cold energy in Gas Turbine based power generation cycle, are discussed in this paper. The feasibility of cooling GT inlet air by virtue of the cold energy of Liquefied LNG to increase power output of a Combined Cycle Power Plant (CCPP) for different ambient conditions is analyzed and also the effect on efficiency is discussed. The use of cold energy in condenser cooling water circulating system to improve efficiency of the CCPP is also analyzed. Air cooling capacity and power augmentation for a combined cycle power plant based on the advanced class industrial heavy duty gas turbine are demonstrated as a function of the ambient temperature and humidity. The economic feasibility of utilizing the cold energy is also deliberated.


2020 ◽  
Vol 120 ◽  
pp. 161-177
Author(s):  
Chao Deng ◽  
Ahmed T. Al-Sammarraie ◽  
Thamir K. Ibrahim ◽  
Erfan Kosari ◽  
Firdaus Basrawi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document