scholarly journals Efficient Personalized Influential Community Search in Large Networks

Author(s):  
Yanping Wu ◽  
Jun Zhao ◽  
Renjie Sun ◽  
Chen Chen ◽  
Xiaoyang Wang

AbstractCommunity search, which aims to retrieve important communities (i.e., subgraphs) for a given query vertex, has been widely studied in the literature. In the recent, plenty of research is conducted to detect influential communities, where each vertex in the network is associated with an influence value. Nevertheless, there is a paucity of work that can support personalized requirement. In this paper, we propose a new problem, i.e., maximal personalized influential community search. Given a graph G, an integer k and a query vertex u, we aim to obtain the most influential community for u by leveraging the k-core concept. To handle larger networks efficiently, two algorithms, i.e., top-down algorithm and bottom-up algorithm, are developed. In real-life applications, there may be a lot of queries issued. Therefore, an optimal index-based approach is proposed in order to meet the online requirement. In many scenarios, users may want to find multiple communities for a given query. Thus, we further extend the proposed techniques for the top-r case, i.e., retrieving r communities with the largest influence value for a given query. Finally, we conduct extensive experiments on 6 real-world networks to demonstrate the advantage of proposed techniques.


AJIL Unbound ◽  
2018 ◽  
Vol 112 ◽  
pp. 237-243
Author(s):  
Wolfgang Alschner

There are two ways of thinking about institutional choice in the context of multilateral investment law reform. One starts from abstract principles, asking what policy goal investment law is supposed to achieve and what institutional choice most effectively advances that goal. The other draws on practical experimentation, asking what institutional choices states are making and how these choices perform in real life. Sergio Puig and Gregory Shaffer present a compelling analytical framework for the former, top-down approach to investment law reform. In this essay, I will scrutinize their analysis and argue that the latter, bottom-up approach is more promising.



2012 ◽  
Vol 50 (10) ◽  
pp. 2415-2425 ◽  
Author(s):  
Björn Machner ◽  
Michael Dorr ◽  
Andreas Sprenger ◽  
Janina von der Gablentz ◽  
Wolfgang Heide ◽  
...  


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Stefan Hegselmann ◽  
Michael Storck ◽  
Sophia Gessner ◽  
Philipp Neuhaus ◽  
Julian Varghese ◽  
...  

Abstract Background The variety of medical documentation often leads to incompatible data elements that impede data integration between institutions. A common approach to standardize and distribute metadata definitions are ISO/IEC 11179 norm-compliant metadata repositories with top-down standardization. To the best of our knowledge, however, it is not yet common practice to reuse the content of publicly accessible metadata repositories for creation of case report forms or routine documentation. We suggest an alternative concept called pragmatic metadata repository, which enables a community-driven bottom-up approach for agreeing on data collection models. A pragmatic metadata repository collects real-world documentation and considers frequent metadata definitions as high quality with potential for reuse. Methods We implemented a pragmatic metadata repository proof of concept application and filled it with medical forms from the Portal of Medical Data Models. We applied this prototype in two use cases to demonstrate its capabilities for reusing metadata: first, integration into a study editor for the suggestion of data elements and, second, metadata synchronization between two institutions. Moreover, we evaluated the emergence of bottom-up standards in the prototype and two medical data managers assessed their quality for 24 medical concepts. Results The resulting prototype contained 466,569 unique metadata definitions. Integration into the study editor led to a reuse of 1836 items and item groups. During the metadata synchronization, semantic codes of 4608 data elements were transferred. Our evaluation revealed that for less complex medical concepts weak bottom-up standards could be established. However, more diverse disease-related concepts showed no convergence of data elements due to an enormous heterogeneity of metadata. The survey showed fair agreement (Kalpha = 0.50, 95% CI 0.43–0.56) for good item quality of bottom-up standards. Conclusions We demonstrated the feasibility of the pragmatic metadata repository concept for medical documentation. Applications of the prototype in two use cases suggest that it facilitates the reuse of data elements. Our evaluation showed that bottom-up standardization based on a large collection of real-world metadata can yield useful results. The proposed concept shall not replace existing top-down approaches, rather it complements them by showing what is commonly used in the community to guide other researchers.



Author(s):  
Tom Foulsham ◽  
Craig Chapman ◽  
Eleni Nasiopoulos ◽  
Alan Kingstone


Author(s):  
Smriti Sridhar ◽  
Younghoon Kwon MD. ◽  
Yeilim Cho MD. ◽  
Inki Kim PhD.

Bottom-up and top-down processes are the two mechanisms of visual attention allocation, which allow people to efficiently spot task-relevant stimuli from cluttered and noisy environments, while staying alert to abnormalities within the visual field of view. This paper presents a preliminary study of the physicians’ real-life interaction with Information Communication Technology (ICT) in their own offices, along with extensively analyzing one case of an hour-long interaction of a physician, in which one performs a daily routine of reviewing patient electronic health records (EHRs) and writing diagnostic notes to the system interface. The physician interactions were captured in a time series data by recording display screen, keystrokes and mouse movements, also by simultaneously tracking eye movements. Then, a fuzzy-based model that can distinguish bottom-up and top-down processes were defined by using statistical random variables in terms of eye-movement patterns. The shift between those two attentional processes was detected by tracking the parametric changes of gaze behaviors as input: significant shift of fixation, sustained gazing, and fixation trajectory over time. Based on those gaze metrics, a random variable was assigned to the discrete probability of low (0), medium (0.5), or high (1.0), for a quantified fuzzy output, which was further machine-learned into an Adaptive Neuro-Fuzzy Inference System (ANFIS) model in order to judge how a physician is likely to be dominated by a bottom-up or top-down processes in performing a task at that instance in time. On training the ANFIS model with three different types of fuzzy membership functions (Gaussian, triangular and trapezoidal), the model performed best with the Gaussian function (after 100 iterations, the predicted root mean-square error (RMSE) converged at 0.07%, yielding a smooth linear curve). For a proof-of concept, the model was implemented by using one physician’s gaze behaviors, of which the average, machine-learned fuzzy output probability indicated that the physician was veering toward bottom-up visual attention. This individualized, task-specific pattern of visual attention has implications for the designs of intelligent interface in ICT. Our ANFIS model can scale up to different physicians and tasks to predict the likelihood of bottom-up or top-down information processing based on real-world gaze behaviors.



2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shi Meng ◽  
Hao Yang ◽  
Xijuan Liu ◽  
Zhenyue Chen ◽  
Jingwen Xuan ◽  
...  

Graphs have been widely used to model the complex relationships among entities. Community search is a fundamental problem in graph analysis. It aims to identify cohesive subgraphs or communities that contain the given query vertices. In social networks, a user is usually associated with a weight denoting its influence. Recently, some research is conducted to detect influential communities. However, there is a lack of research that can support personalized requirement. In this study, we propose a novel problem, named personalized influential k -ECC (PIKE) search, which leverages the k -ECC model to measure the cohesiveness of subgraphs and tries to find the influential community for a set of query vertices. To solve the problem, a baseline method is first proposed. To scale for large networks, a dichotomy-based algorithm is developed. To further speed up the computation and meet the online requirement, we develop an index-based algorithm. Finally, extensive experiments are conducted on 6 real-world social networks to evaluate the performance of proposed techniques. Compared with the baseline method, the index-based approach can achieve up to 7 orders of magnitude speedup.



Author(s):  
Fengwei Yang ◽  
Sai Gu

AbstractSince 2011, when the concepts of Industry 4.0 were first announced, this industrial revolution has grown and expanded from some theoretical concepts to real-world applications. Its practicalities can be found in many fields and affect nearly all of us in so many ways. While we are adapting to new changes, adjustments are starting to reveal on national and international levels. It is becoming clear that it is not just new innovations at play, technical advancements, governmental policies and markets have never been so intertwined. Here, we generally describe the concepts of Industry 4.0, explain some new terminologies and challenges for clarity and completeness. The key of this paper is that we summarise over 14 countries’ up-to-date national strategies and plans for Industry 4.0. Some of them are bottom-up, such as Portugal, some top-down, such as Italy, a few like the United States had already been moving in this direction long before 2011. We see governments are tailoring their efforts accordingly, and industries are adapting as well as driving those changes.



2014 ◽  
Vol 25 (4) ◽  
pp. 233-238 ◽  
Author(s):  
Martin Peper ◽  
Simone N. Loeffler

Current ambulatory technologies are highly relevant for neuropsychological assessment and treatment as they provide a gateway to real life data. Ambulatory assessment of cognitive complaints, skills and emotional states in natural contexts provides information that has a greater ecological validity than traditional assessment approaches. This issue presents an overview of current technological and methodological innovations, opportunities, problems and limitations of these methods designed for the context-sensitive measurement of cognitive, emotional and behavioral function. The usefulness of selected ambulatory approaches is demonstrated and their relevance for an ecologically valid neuropsychology is highlighted.



PsycCRITIQUES ◽  
2005 ◽  
Vol 50 (19) ◽  
Author(s):  
Michael Cole
Keyword(s):  
Top Down ◽  


2011 ◽  
Author(s):  
A. Kiesel ◽  
F. Waszak ◽  
R. Pfister


Sign in / Sign up

Export Citation Format

Share Document