A novel 4D resolution imaging method for low and medium atomic number objects at the centimeter scale by coincidence detection technique of cosmic-ray muon and its secondary particles

2022 ◽  
Vol 33 (1) ◽  
Author(s):  
Xuan-Tao Ji ◽  
Si-Yuan Luo ◽  
Yu-He Huang ◽  
Kun Zhu ◽  
Jin Zhu ◽  
...  
2013 ◽  
Vol 718-720 ◽  
pp. 2062-2067 ◽  
Author(s):  
Shang Chen Fu ◽  
Zhen Jian Lv ◽  
Ding Ma ◽  
Li Hua Shi

The use of Lamb waves for structural health monitoring (SHM) has complicated by its multi-mode character and dispersion effect, which impacts the damage positioning and high-resolution imaging. The group velocity dispersion curves of Lamb waves can be employed to warp the frequency axis, and then to establish warped frequency transform (WFT) to process Lamb waves. In this paper, received signals are directly compensated with warped frequency transform to suppress dispersion, and a new imaging method is proposed based on warped frequency transform. The propagation of Lamb waves in damaged aluminum plate is simulated by finite element software ABAQUS, results show that warped frequency transform can effectively compensate dispersive wave-packets, and high-resolution damage imaging can be obtained by the proposed method.


1968 ◽  
Vol 46 (5) ◽  
pp. 343-358 ◽  
Author(s):  
B. Judek

Interaction mean free paths of relativistic secondary particles emitted from interactions of heavy primary cosmic-ray nuclei in emulsions were measured. The results show that among the Be, Li, He, and singly charged secondary nuclei there are particles present which interact with a cross section several times higher than the expected geometrical value. The stars produced by these particles have the characteristics of ordinary nuclear interactions. There appears to be no interpretation of these observations in terms of any known particle phenomena.


2018 ◽  
Vol 184 (1) ◽  
pp. 79-89 ◽  
Author(s):  
Zi-Yi Yang ◽  
Rong-Jiun Sheu

Abstract Galactic cosmic-ray-induced secondary particles in the atmosphere constitute an important source of radiation exposure to airline crews and passengers. In this study, a systematic dose assessment was conducted for 11 popular flights from Taiwan, with an emphasis on the effects of flight route variation and assumption. The case studies covered a broad range of commercial flights departing from Taipei, from a domestic flight of <1 h to a long-haul international flight of more than 14 h. For each route under study, information on 100 actual flight routes was retrieved from flight tracking data collected from June to September 2017, and the information was analyzed using a self-developed program called the ‘NTHU Flight Dose Calculator’. The resulting distribution of route doses provided not only the mean value and associated standard deviation but also information on the characteristics of aviation dose assessment and management. Furthermore, compared with actual flight routes, the dose differences introduced by great-circle approximation were evaluated, and the effects of solar activity on the dose assessment of these flights were reported.


2019 ◽  
Vol 210 ◽  
pp. 02009
Author(s):  
Jean-Noël Capdevielle ◽  
Zbigniew Plebaniak ◽  
Barbara Szabelska ◽  
Jacek Szabelski

The model HDPM of CORSIKA has been updated and developed on the base of the recent measurements by ALICE, CMS, TOTEM, LHCb, LHCf... The new model, GHOST, involving a four-source production reproduces correctly the pseudo-rapidity distributions of charged secondaries and has been tested with the data in the mid and forward rapidity region, especially in the complex case of TOTEM, and also with the recent measurements of CMS, up to $ \sqrt s = 13\,{\rm{TeV}} $ (9.0 1016 eV in laboratory system). Special calculations have been devoted to the semi-inclusive data playing an important role in the cosmic ray simulation (fluctuations in earliest collisions, individual cascades measured at high altitude with high energy emulsion chambers). Taking into account the violation of KNO scaling, the negative binomial distribution (NegBin-expressed in terms of scaled elements) $ z = {n \mathord{\left/ {\vphantom {n {\bar {n}}}} \right. \kern-\nulldelimiterspace} {\bar {n}}} $ (n is the number of charged secondaries) has been used pointing out a possible asymptotic behaviour of total charged multiplicities at primary energies exceeding 40 TeV (8.5 1017 eV). Thus, larger reduction of the energies devoted to the leading cluster and very large multiplicity of secondary particles could suggest for EAS generated by primary protons a larger production of muons and a shower maximum at higher altitude.


2016 ◽  
Vol 5 (2) ◽  
pp. 437-449 ◽  
Author(s):  
Sindulfo Ayuso ◽  
Juan José Blanco ◽  
José Medina ◽  
Raúl Gómez-Herrero ◽  
Oscar García-Población ◽  
...  

Abstract. Conventional real-time coincidence systems use electronic circuitry to detect coincident pulses (hardware coincidence). In this work, a new concept of coincidence system based on real-time software (software coincidence) is presented. This system is based on the recurrent supervision of the analogue-to-digital converters status, which is described in detail. A prototype has been designed and built using a low-cost development platform. It has been applied to two different experimental sets for cosmic ray muon detection. Experimental muon measurements recorded simultaneously using conventional hardware coincidence and our software coincidence system have been compared, yielding identical results. These measurements have also been validated using simultaneous neutron monitor observations. This new software coincidence system provides remarkable advantages such as higher simplicity of interconnection and adjusting. Thus, our system replaces, at least, three Nuclear Instrument Modules (NIMs) required by conventional coincidence systems, reducing its cost by a factor of 40 and eliminating pulse delay adjustments.


2017 ◽  
pp. 445-490
Author(s):  
Ruliang Yang ◽  
Haiying Li ◽  
Shiqiang Li ◽  
Ping Zhang ◽  
Lulu Tan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document