Evolution of Eigenvalues of Geometric Operator Under the Rescaled List’s Extended Ricci Flow

Author(s):  
Shahroud Azami
2017 ◽  
Vol 59 (3) ◽  
pp. 743-751
Author(s):  
SHOUWEN FANG ◽  
FEI YANG ◽  
PENG ZHU

AbstractLet (M, g(t)) be a compact Riemannian manifold and the metric g(t) evolve by the Ricci flow. In the paper, we prove that the eigenvalues of geometric operator −Δφ + $\frac{R}{2}$ are non-decreasing under the Ricci flow for manifold M with some curvature conditions, where Δφ is the Witten Laplacian operator, φ ∈ C2(M), and R is the scalar curvature with respect to the metric g(t). We also derive the evolution of eigenvalues under the normalized Ricci flow. As a consequence, we show that compact steady Ricci breather with these curvature conditions must be trivial.


2010 ◽  
Vol 0 (-1) ◽  
pp. 447-454
Author(s):  
A. Bhattacharyya ◽  
T. De
Keyword(s):  

2020 ◽  
Vol 7 (1) ◽  
pp. 241-256
Author(s):  
Matthew Gibson ◽  
Jeffrey Streets

AbstractWe describe natural deformation classes of generalized Kähler structures using the Courant symmetry group, which determine natural extensions of the notions of Kähler class and Kähler cone to generalized Kähler geometry. We show that the generalized Kähler-Ricci flow preserves this generalized Kähler cone, and the underlying real Poisson tensor.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 353
Author(s):  
Ligia Munteanu ◽  
Dan Dumitriu ◽  
Cornel Brisan ◽  
Mircea Bara ◽  
Veturia Chiroiu ◽  
...  

The purpose of this paper is to study the sliding mode control as a Ricci flow process in the context of a three-story building structure subjected to seismic waves. The stability conditions result from two Lyapunov functions, the first associated with slipping in a finite period of time and the second with convergence of trajectories to the desired state. Simulation results show that the Ricci flow control leads to minimization of the displacements of the floors.


Author(s):  
Peng Lu ◽  
Jiuru Zhou

AbstractWe construct the ancient solutions of the hypersurface flows in Euclidean spaces studied by B. Andrews in 1994.As time {t\rightarrow 0^{-}} the solutions collapse to a round point where 0 is the singular time. But as {t\rightarrow-\infty} the solutions become more and more oval. Near the center the appropriately-rescaled pointed Cheeger–Gromov limits are round cylinder solutions {S^{J}\times\mathbb{R}^{n-J}}, {1\leq J\leq n-1}. These results are the analog of the corresponding results in Ricci flow ({J=n-1}) and mean curvature flow.


2009 ◽  
Vol 345 (4) ◽  
pp. 819-834 ◽  
Author(s):  
Lizhen Ji ◽  
Rafe Mazzeo ◽  
Natasa Sesum
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document