Thermally conductive glass fiber reinforced epoxy composites with intrinsic self-healing capability

Author(s):  
Fang Chen ◽  
Hua Xiao ◽  
Zhong Quan Peng ◽  
Ze Ping Zhang ◽  
Min Zhi Rong ◽  
...  
2021 ◽  
Author(s):  
Chinnappan Balaji Ayyanar ◽  
S. K. Pradeep Mohan ◽  
C. Bharathiraj ◽  
Sanjay Rangappa ◽  
Suchart Siengchin

2011 ◽  
Vol 66-68 ◽  
pp. 683-687 ◽  
Author(s):  
Li Zhang ◽  
Yan Jue Gong ◽  
Shuo Zhang

By designing the different formulations of the composites and adopting optimized technology including extrusion and molding, the effects of the Micro-capsules on the properties of nylon composites are analyzed by the impact property test. The mechanical impact property of the glass fiber reinforced nylon composites is influenced little if the content of the self-healing microcapsules added is less than 3.5%, and the technology of self-healing microcapsules used in the polymer composite gear is feasible.


2019 ◽  
Vol 8 (3) ◽  
pp. 2450-2453

Usage of Natural Fiber Composites (NFC) is increased rapidly due to the bio degradability nature of the fibers. These natural fibers are mixed with synthetic fibers to obtain better mechanical properties. In this study, pine apple and glass fiber reinforced epoxy composites are developed and their mechanical properties were evaluated. Composites were prepared by varying the fibers content and by using hand layup process with glass moulds of size 160 x 160 x 3 mm3 . The obtained laminates were sliced as per the ASTM criterion to test the properties. Higher glass fiber content in the composite specimen obtained higher mechanical properties. The composites can be utilized for the purpose of manufacturing components like doors panels, desks, roof tops etc.


Sign in / Sign up

Export Citation Format

Share Document