Biomechanical Effects of Tibial Stems with Different Structures on Human Knee Joint after Total Knee Arthroplasty: A Finite Element Analysis

Author(s):  
Meng Zhang ◽  
Kaiwen Zhang ◽  
He Gong
2016 ◽  
Vol 823 ◽  
pp. 143-148 ◽  
Author(s):  
Dan Calafeteanu ◽  
Daniela Tarniţă ◽  
Marius Catana ◽  
Dan Tarnita

In this paper the effects of varus tilt on contact stresses in the three components of total knee prostheses using 3D finite element analysis were investigated. Using Ansys simulation environment, six complex virtual models of human knee joint–prosthesis assembly obtained for six different varus tilts which increase from 176o to 191o, with an increment of 3o have been subjected to finite element analysis in order to obtain the stress maps and total displacements maps.


Author(s):  
Eric Rohrs ◽  
Manish Paliwal ◽  
D. Gordon Allan

Aseptic loosening of the tibial implant is one of the major reasons of failure in Total Knee Arthroplasty (TKA). The cement viscosity at the time of application to the bone influences the cement penetration and stability of the prosthesis. Four cements of different viscosities and set times were selected for analysis (Simplex-P, DePuy-2, Palacos, and Endurance). Finite element analysis was used to model cement flow and cement mantle resulting from a surgically implanted tibial plate into sawbone open cell blocks simulating tibial cancellous bone (Pacific Research, WA). Frictional stress, pressure, sliding distance, and total stress at the bone-cement-stem interface were studied at the contact interfaces, which may contribute towards construct stability. Palacos had the maximum interface pressure, sliding distance, and total stress, while DePuy-2 displayed the lowest total stress and sliding distance at interface. Simulated flow profile correlated well with the cemented constructs’ radiographic profiles.


1997 ◽  
Vol 12 (3) ◽  
pp. 139-148 ◽  
Author(s):  
MZ Bendjaballah ◽  
A Shirazi-Adl ◽  
DJ Zukor

2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Duraisamy Shriram ◽  
Gideon Praveen Kumar ◽  
Fangsen Cui ◽  
Yee Han Dave Lee ◽  
Karupppasamy Subburaj

Sign in / Sign up

Export Citation Format

Share Document