scholarly journals Numerical study of cavitating flow in orifices and its effect on spray characteristics

2018 ◽  
Vol 30 (5) ◽  
pp. 908-919
Author(s):  
Morteza Ghorbani
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Włodzimierz Wróblewski ◽  
Krzysztof Bochon ◽  
Mirosław Majkut ◽  
Krzysztof Rusin ◽  
Emad Hasani Malekshah

Purpose The presence of air in the water flow over the hydrofoil is investigated. The examined hydrofoil is ClarkY 11.7% with an angle of attack of 8 deg. The flow simulations are performed with the assumption of different models. The Singhal cavitation model and the models which resolve the non-condensable gas including 2phases and 3phases are implemented in the numerical model. The calculations are performed with the uRANS model with assumption of the constant temperature of the mixture. The two-phase flow is simulated with a mixture model. The dynamics and structures of cavities are compared with literature data and experimental results. Design/methodology/approach The cavitation regime can be observed in some working conditions of turbomachines. The phase transition, which appears on the blades, is the source of high dynamic forces, noise and also can lead to the intensive erosion of the blade surfaces. The need to control this process and to prevent or reduce the undesirable effects can be fulfilled by the application of non-condensable gases to the liquid. Findings The results show that the Singhal cavitation model predicts the cavity structure and related characteristics differently with 2phases and 3phases models at low cavitation number where the cavitating flow is highly dynamic. On the other hand, the impact of dissolved air on the cloud structure and dynamic characteristic of cavitating flow is gently observable. Originality/value The originality of this paper is the evaluation of different numerical cavitation models for the prediction of dynamic characteristics of cavitating flow in the presence of air.


Author(s):  
Hiroki Matsunari ◽  
Satoshi Watanabe ◽  
Yusuke Konishi ◽  
Naoto Suefuji ◽  
Akinori Furukawa

2019 ◽  
Vol 54 (6) ◽  
pp. 835-849
Author(s):  
Nguyen Tat Thang ◽  
Duong Ngoc

Author(s):  
Thomas D. Foust ◽  
Kurt D. Hamman ◽  
Brent A. Detering

The performance and capacity of Kraft recovery boilers is sensitive to black liquor velocity, droplet size and flow distribution in the furnace. Studies have shown that controlling droplet size and flow distribution improves boiler efficiency while allowing increased flight drying and devolatilization, and decreased carryover. The purpose of this study is to develop a robust two-phase numerical model to predict black liquor splashplate nozzle spray characteristics. A three-dimensional time dependent numerical study of black liquor sheet formation and sheet breakup is described. The volume of fluid (VOF) model is used to simulate flow through the splashplate nozzle up to initial sheet breakup and droplet formation. The VOF model solves the conservation equations of volume fraction and momentum utilizing the finite volume technique. Black liquor velocity, droplet size and flow distribution over a range of operating parameters are simulated using scaled physical models of splashplate nozzles. The VOF model is compared to results from a flow visualization experiment and experimental data found in the literature. The details of the simulation and experimental results are presented.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Hashem Nowruzi ◽  
Parviz Ghadimi ◽  
Mehdi Yousefifard

In the present study, nonreacting and nonevaporating spray characteristics of heavy fuel oil (HFO)/n-butanol blends are numerically investigated under two different high pressure injections in medium speed engines. An Eulerian-Lagrangian multiphase scheme is used to simulate blend of C14H30as HFO and 0%, 10%, 15%, and 20% by volume of n-butanol. OpenFOAM CFD toolbox is modified and implemented to study the effect of different blends of HFO/n-butanol on the spray characteristics at 600 and 1000 bar. To validate the presented simulations, current numerical results are compared against existing experimental data and good compliance is achieved. Based on the numerical findings, addition of n-butanol to HFO increases the particles volume in parcels at 600 bar. It was also found that blend fuels increase the number of spray particles and the average velocity of spray compared to pure HFO. Moreover, under injection pressure of 1000 bar, HFO/n-butanol blends compared to pure HFO fuel decrease particles volume in parcels of spray. Another influence of HFO/n-butanol blends is the decrease in average of particles diameter in parcels. Meanwhile, the effect of HFO/n-butanol on spray length is proved to be negligible. Finally, it can be concluded that higher injection pressure improves the spray efficiency.


Sign in / Sign up

Export Citation Format

Share Document