scholarly journals Influence of direct electric field on PMCG-alginate-based microcapsule

Author(s):  
Peter Kasak ◽  
Jana Sasová ◽  
Ruqaia Shoheeduzzaman ◽  
Mirza T. Baig ◽  
Aldana Ali H. A. Alyafei ◽  
...  

AbstractIn this study, the influence of direct electric current on a microcapsule was investigated. The microcapsule consisted of a core from a calcium ion and sodium alginate (SA) complex and the microcapsule membrane was formed by the polyionic complexation of poly(methylene-co-guanidine) (PMCG) and cellulose sulfate (CS). Microcapsules showed swelling and decreasing mechanical properties under the applied electric current, and the microcapsule membrane showed anisotropic swelling on the electrode side. The effect is attributed to an electrokinetic phenomenon, predominant formation of hydroxyl ions, and the diffusion of hydrated ions. The swelling degree of the microcapsule and microcapsule membrane at different pH and the applied electric current under alkali and acidic conditions was investigated. The swelling degree was influenced by the dissociation of the membrane, which was observed after applying the electric field, which was caused by the electrokinetic effect and the neutralization of the polycation (under alkali conditions) or polyanionic (under acidic conditions) segment during membrane formation.

2011 ◽  
Vol 14 (1) ◽  
pp. 13
Author(s):  
Z.A. Mansurov ◽  
N.G. Prikhodko ◽  
B.T. Lesbayev ◽  
M. Auyelkhankyzy

<p>Influence of the direct electric current of different polarity on flame forms, soot yield, parameters of soot samples micro crystals (Lа, Lc and d<sub>002</sub>) and soot particles sizes in intensity range from 0.5 to 20 kV at electrode systems «needle-plane» at combustion of benzene-oxygen mixture at the ratio С/О = 1.0 with addition of 10% volume of argon at pressure 40 Torr was investigated. It was found that at positive polarity action of electric field rises to such a degree that at U ≥ 10 kV it leads to flame extinction. It is shown that maximum decrease in soot yield is observed at negative polarity. It was found that intensity range of electric field in which soot yield was 10% more soot yield without applying electric field. It was shown that parameters of soot micro crystals on average remain constant irrespective of intensity and polarity. Fullerenes С<sub>60</sub>, С<sub>70</sub> and PAH were identified in the extracts of soot samples by the method of IRspectroscopy.</p>


1956 ◽  
Vol 11 (1) ◽  
pp. 71-75
Author(s):  
E. Haeffner ◽  
Th. Sjöborg ◽  
S. Lindhe

The isotope separation effect of a direct electric current in a liquid metal is demonstrated by passing a current through mercury, which is enclosed in a capillary tube. The second part of the paper deals with an attempt of establishing an isotope effect when a direct current is passed through an uranium wire.


Author(s):  
E. N. Ovchinnikov ◽  
N. V. Godovykh ◽  
O. V. Dyuryagina ◽  
M. V. Stogov ◽  
D. N. Ovchinnikov ◽  
...  

2018 ◽  
Vol 14 (2) ◽  
pp. 97
Author(s):  
Anwar Santoso ◽  
Dadang Nurmali ◽  
Mira Juangsih ◽  
Iyus Edi Rusnadi ◽  
Sri Ekawati ◽  
...  

The influence of geomagnetic storms on the ionosphere in the equatorial and low latitudes can be either rising or falling value of the value foF2 with the different response delay time. The difference in response is one of them allegedly influenced by the modification of Equatorial Electrojet (EEJ) generated by the penetration of high latitude electric field towards the low latitude electric field and the equator. Therefore, this paper analyzes the influence of the high latitude penetration of electric current to the low latitude electric current towards the ionosphere response to Indonesia's current geomagnetic storms using the data foF2 BPAA Sumedang (SMD; 6,910 S; 106,830E geographic coordinates or 16,550 S; 179,950 E magnetic coordinates) and data from the Biak geomagnetic field station (BIK; 1,080 S; 136,050 E geographic coordinates or  9,730 S; 207,390 E magnetic coordinates) in 2000-2001. The result showed that the injection of the electric field of the high latitudes to lower latitudes causing foF2 BPAA Sumedang to be disturbed. Onset of the foF2 disturbance in BPAA Sumedang started coincide with EEJ(HBIK-HDRW) and reached its minimum point with a time delay between 0 to 4 hours before and after Dst index reached the minimum point. For a delay time of 0 to 4 hours after the Dst index reached the minimum point, the results were in accordance with the research results from the prior research. However, for the time difference of between 0 to 4 hours before the Dst index reached the minimum point, the results differ from their results. AbstrakPengaruh badai geomagnet terhadap ionosfer di ekuator dan lintang rendah berupa naiknya nilai foF2 atau turunnya nilai foF2 dengan waktu tunda respon berbeda-beda. Perbedaan respon tersebut salah satunya diduga dipengaruhi oleh modifikasi Equatorial electrojet (EEJ) yang dihasilkan oleh penetrasi medan listrik lintang tinggi sampai daerah lintang rendah dan ekuator. Oleh karena itu, dalam makalah ini dilakukan analisis pengaruh penetrasi arus listrik lintang tinggi ke lintang rendah terhadap ionosfer saat badai geomagnet menggunakan data foF2 dari Balai Pengamatan Antariksa dan Atmosfer (BPAA) Sumedang (SMD; 6,910 LS; 106,830 BT koordinat geografis atau 16,550 LS; 179,950 BT koordinat magnet) dan data medan geomagnet dari stasiun Biak (BIK; 1,080 LS; 136,050 BT koordinat geografis atau 9,730 LS; 207,390 BT koordinat magnet) tahun 2000-2001. Hasilnya diperoleh bahwa penetrasi medan listrik dari lintang tinggi ke lintang lebih rendah Indonesia menyebabkan foF2 BPAA Sumedang terganggu. Onset gangguan foF2 BPAA Sumedang mulai terjadi bertepatan dengan EEJ(HBIK-HDRW) mencapai titik minimumnya dengan jeda waktu antara 0 sampai 4 jam sebelum dan sesudah indeks Dst mencapai minimum. Untuk beda waktu 0 sampai 4 jam sesudah indeks Dst mencapai minimum, hasilnya bersesuaian dengan hasil penelitian peneliti sebelumnya. Namun, untuk beda waktu 0 sampai 4 jam sebelum indeks Dst mencapai minimum, hasilnya merupakan temuan berbeda dari hasil mereka.


Radiology ◽  
1938 ◽  
Vol 31 (4) ◽  
pp. 414-417
Author(s):  
John Russell Carty

2005 ◽  
Vol 23 (4) ◽  
pp. 1347-1354 ◽  
Author(s):  
V. M. Vasyliūnas

Abstract. Fundamentally, the time derivative of the electric field is given by the displacement-current term in Maxwell's generalization of Ampère's law, and the time derivative of the electric current density is given by the generalized Ohm's law. The latter is derived by summing the accelerations of all the plasma particles and can be written exactly, with no approximations, in a (relatively simple) primitive form containing no other time derivatives. When one is dealing with time scales long compared to the inverse of the electron plasma frequency and spatial scales large compared to the electron inertial length, however, the time derivative of the current density becomes negligible in comparison to the other terms in the generalized Ohm's law, which then becomes the equation that determines the electric field itself. Thus, on all scales larger than those of electron plasma oscillations, neither the time evolution of J nor that of E can be calculated directly. Instead, J is determined by B through Ampère's law and E by plasma dynamics through the generalized Ohm's law. The displacement current may still be non-negligible if the Alfvén speed is comparable to or larger than the speed of light, but it no longer determines the time evolution of E, acting instead to modify J. For theories of substorms, this implies that, on time scales appropriate to substorm expansion, there is no equation from which the time evolution of the current could be calculated, independently of ∇xB. Statements about change (disruption, diversion, wedge formation, etc.) of the electric current are merely descriptions of change in the magnetic field and are not explanations.


Sign in / Sign up

Export Citation Format

Share Document