One-step reverse transcription loop-mediated isothermal amplification: a simple, sensitive and rapid assay for detection of potato virus X in potato leaves and tubers

2019 ◽  
Vol 72 (2) ◽  
pp. 321-328 ◽  
Author(s):  
Baswaraj Raigond ◽  
Ambika Verma ◽  
Shivani Roach ◽  
Tarvinder Kochhar ◽  
Shilpa ◽  
...  
Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 605-610 ◽  
Author(s):  
Xianzhou Nie

A reverse transcription loop-mediated isothermal amplification of DNA (RT-LAMP) for detection of Potato virus Y (PVY) was developed. In this procedure, a set of four primers matching a total of six sequences of the coat protein (CP) gene of PVY were designed in such a way that a loop could be formed and elongated during DNA amplification. Using PVY CP complementary DNA clones as templates, the LAMP reaction was optimized by adjusting the concentrations of MgSO4, dNTPs, and Bst DNA polymerase. The effects of fragment length of target DNA on LAMP also were investigated. Two-step and one-step RT-LAMPs were performed using RNA extracts of various PVY cultures, and the results were correlated with two-step reverse transcription polymerase chain reaction (RT-PCR) for detection of PVY. Further, the turbidity caused by precipitation of magnesium pyrophosphate formed in positive RT-LAMP reactions was used to measure the amplification by utilizing a time-saving spectrophotometric method. The one-step RT-LAMP-turbidity method gave results comparable with the two-step RT-PCR method for detection of PVY from potato leaf and tuber samples. Of the total 240 samples, 234 were diagnosed similarly by both methods.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Severino Jefferson Ribeiro da Silva ◽  
Keith Pardee ◽  
Udeni B. R. Balasuriya ◽  
Lindomar Pena

AbstractWe have previously developed and validated a one-step assay based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) for rapid detection of the Zika virus (ZIKV) from mosquito samples. Patient diagnosis of ZIKV is currently carried out in centralized laboratories using the reverse transcription-quantitative polymerase chain reaction (RT-qPCR), which, while the gold standard molecular method, has several drawbacks for use in remote and low-resource settings, such as high cost and the need of specialized equipment. Point-of-care (POC) diagnostic platforms have the potential to overcome these limitations, especially in low-resource countries where ZIKV is endemic. With this in mind, here we optimized and validated our RT-LAMP assay for rapid detection of ZIKV from patient samples. We found that the assay detected ZIKV from diverse sample types (serum, urine, saliva, and semen) in as little as 20 min, without RNA extraction. The RT-LAMP assay was highly specific and up to 100 times more sensitive than RT-qPCR. We then validated the assay using 100 patient serum samples collected from suspected cases of arbovirus infection in the state of Pernambuco, which was at the epicenter of the last Zika epidemic. Analysis of the results, in comparison to RT-qPCR, found that the ZIKV RT-LAMP assay provided sensitivity of 100%, specificity of 93.75%, and an overall accuracy of 95.00%. Taken together, the RT-LAMP assay provides a straightforward and inexpensive alternative for the diagnosis of ZIKV from patients and has the potential to increase diagnostic capacity in ZIKV-affected areas, particularly in low and middle-income countries.


2016 ◽  
Vol 161 (5) ◽  
pp. 1359-1364 ◽  
Author(s):  
Marta Budziszewska ◽  
Przemysław Wieczorek ◽  
Aleksandra Obrępalska-Stęplowska

Sign in / Sign up

Export Citation Format

Share Document