scholarly journals Semi-supervised GANs to Infer Travel Modes in GPS Trajectories

Author(s):  
Ali Yazdizadeh ◽  
Zachary Patterson ◽  
Bilal Farooq
Keyword(s):  
2021 ◽  
Vol 13 (2) ◽  
pp. 690
Author(s):  
Tao Wu ◽  
Huiqing Shen ◽  
Jianxin Qin ◽  
Longgang Xiang

Identifying stops from GPS trajectories is one of the main concerns in the study of moving objects and has a major effect on a wide variety of location-based services and applications. Although the spatial and non-spatial characteristics of trajectories have been widely investigated for the identification of stops, few studies have concentrated on the impacts of the contextual features, which are also connected to the road network and nearby Points of Interest (POIs). In order to obtain more precise stop information from moving objects, this paper proposes and implements a novel approach that represents a spatio-temproal dynamics relationship between stopping behaviors and geospatial elements to detect stops. The relationship between the candidate stops based on the standard time–distance threshold approach and the surrounding environmental elements are integrated in a complex way (the mobility context cube) to extract stop features and precisely derive stops using the classifier classification. The methodology presented is designed to reduce the error rate of detection of stops in the work of trajectory data mining. It turns out that 26 features can contribute to recognizing stop behaviors from trajectory data. Additionally, experiments on a real-world trajectory dataset further demonstrate the effectiveness of the proposed approach in improving the accuracy of identifying stops from trajectories.


2017 ◽  
Vol 3 (2) ◽  
pp. 234-247 ◽  
Author(s):  
Min Lu ◽  
Chufan Lai ◽  
Tangzhi Ye ◽  
Jie Liang ◽  
Xiaoru Yuan

Author(s):  
Chun Liu ◽  
Shuangyan Wang ◽  
Salvatore Cuomo ◽  
Gang Mei

2021 ◽  
Vol 10 (11) ◽  
pp. 769
Author(s):  
Zhuhua Liao ◽  
Hao Xiao ◽  
Silin Liu ◽  
Yizhi Liu ◽  
Aiping Yi

The adaptability of traffic lights in the control of vehicle traffic heavily affects the trafficability of vehicles and the travel efficiency of traffic participants in busy urban areas. Existing studies mainly have focused on the presence of traffic lights, but rarely evaluate the impact of traffic lights by analyzing traffic data, thus there is no solution for practicably and precisely self-regulating traffic lights. To address these issues, we propose a low-cost and fast traffic signal detection and impact assessment framework, which detects traffic lights from GPS trajectories and intersection features in a supervised way, and analyzes the impact range and time of traffic lights from intersection track data segments. The experimental results show that our approach gains the best AUC value of 0.95 under the ROC standard classification and indicates that the impact pattern of traffic lights at intersections is high related to the travel rule of traffic participants.


Author(s):  
Selvi C ◽  
Keerthana D

Data mining depends on large-scale taxi traces is an important research concepts. A vital direction for analyzing taxi GPS dataset is to suggest cruising areas for taxi drivers. The project first investigates the real-time demand-supply level for taxis, and then makes an adaptive tradeoff between the utilities of drivers and passengers for different hotspots. This project constructs a recommendation system by jointly considering the profits of both drivers and passengers. At last, the qualified candidates are suggested to drivers based on analysis. The project also provides a real-time charging station recommendation system for EV taxis via large-scale GPS data mining. By combining each EV taxi’s historical recharging actions and real-time GPS trajectories, the present operational state of each taxi is predicted. Based on this information, for an EV taxi requesting a recommendation, recommend a charging station that leads to the minimal total time before its recharging starts.


Sign in / Sign up

Export Citation Format

Share Document