scholarly journals Biofabrication of silver nanoparticles using leaf extract of Rhynchosia beddomei Baker: spectral characterization and their biological activities

2020 ◽  
Vol 2 (5) ◽  
Author(s):  
S. Soneya ◽  
K. V. Saritha
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Muhammad Iftikhar ◽  
Muhammad Zahoor ◽  
Sumaira Naz ◽  
Nausheen Nazir ◽  
Gaber El-Saber Batiha ◽  
...  

In this study, an attempt was made to synthesize silver nanoparticles (Ag-NPs) using Grewia optiva leaf extract and isolated compounds. The bioreductant capacity of Grewia optiva leaf extract for the synthesis of Ag-NPs was assessed using various confirmatory techniques like thermogravimetric analysis (TGA), particle size analysis (PSA), energy-dispersive X-ray (EDX), X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and UV-Visible spectroscopy. The presence of various bioactive compounds in leaf aqueous extract was confirmed through HPLC analysis, and 8 compounds were identified among the different peaks present in the chromatogram. Biopotencies like antioxidant, antibacterial, and effect on hair growth were determined for extract and NPs. Antioxidant capacities were assessed through standard ABTS and DPPH methods. The antibacterial potential was evaluated in terms of zone of inhibition, minimum bactericidal concentration, and minimum inhibitory concentration of the Ag-NPs and the leaf extract against selected strains of bacteria, whereas the effect on growth of rabbit hair was studied through topical treatment for a specific period of time. Better antibacterial and DPPH and ABTS free radical inhibition was observed for the formulated Ag-NPs as compared to leaf extract. The previously isolated eight compounds from this plant’s chloroform and ethyl acetate extracts were also tested for their bioreductant capacities. Out of them, the highest amount of precipitates was obtained with compound VII ((2,5-dihydroxyphenyl)-3 ′ ,6 ′ ,8 ′ -trihydroxyl-4H-chromen-4 ′ -one). The study implies that the biogenically engineered nanoscale particles could have promising biological activities in comparison to parental extract and they need to be investigated further as potential therapeutic agents to be used as antibacterial and antioxidant agents and for hair growth enhancement.


Author(s):  
Y. Subba Rao ◽  
Venkata S. Kotakadi ◽  
T.N.V.K.V. Prasad ◽  
A.V. Reddy ◽  
D.V.R. Sai Gopal

2019 ◽  
Vol 19 (7) ◽  
pp. 4109-4115 ◽  
Author(s):  
Sun Qing ◽  
Qiu Shoutian ◽  
Gu Hongyan ◽  
Yao Ming ◽  
Mallappa Kumara Swamy ◽  
...  

2021 ◽  
Vol 10 (3) ◽  
pp. 2466-2482

In this paper, Prunus persica L. Batsch (wild and variety) plants have been used for the bioreduction of silver ions to silver nanoparticles. Aqueous leaf extract of plants was treated with silver nitrate. The mixture's color changed from pale yellow to dark brown Prunus persica (variety) and dark yellow to greyish brown Prunus persica (wild). The color change was the first indication of silver nanoparticle synthesis, further confirmed by UV-Vis spectroscopy. The surface Plasmon band exhibited absorption peaks for Prunus persica wild and variety leaf extract at 468 nm, 492 nm, 462 nm. The silver nanoparticles were further characterized using X-Ray Diffraction that carried out the crystallographic nature by exhibiting 2θ value from 10˚ to 90˚ corresponding diffraction planes of Face Centered Cubic structure. Fourier Transform Infrared spectroscopy demonstrated organic compounds in plant material that mainly involved in reduction. Prunus persica L. Batsch (wild and variety) mediated silver nanoparticles exhibited excellent antibacterial activity against a human bacterial pathogen. The antioxidant activity was also studied that showed effective results on synthesized silver nanoparticles using the 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. The result showed that Prunus persica L. Batsch proved to be a useful silver nanoparticle.


Author(s):  
Laureen Michelle Houllou ◽  
Robson Antonio Barbosa De Souza ◽  
Carolina Barbosa Malafaia ◽  
Débora Lorrane Montenegro da Paixão ◽  
Alisson Tito Bezerra de Araújo ◽  
...  

Metal nanoparticles are nanostructures that can be applied to biotechnology because they present different biological activities. Among them, the silver nanoparticles (AgNPs) are known to present antimicrobial activity allowing their application in several areas such as medicine and industry. The biological synthesis of AgNPs is ecologically correct and advantageous techniques. The objective of this work was to evaluate the synthesis of AgNps through the green synthesis using extracts of leaves of Tabebuia roseoalba and T. pentaphylla grown in vivo and in vitro. The nanoparticle synthesis solution was colorimetrically evaluated, and the nanoparticles were physically characterized. The results obtained demonstrate that both extracts of both Tabebuia species tested are able to synthesize AgNPs, however only when cultured under in vivo conditions. These data suggest that photosynthesis under natural conditions promotes the production of metabolites that are essential to green synthesis.


2020 ◽  
Vol 2 (5) ◽  
Author(s):  
Netala Vasudeva Reddy ◽  
Bethu Murali Satyanarayana ◽  
Sana Sivasankar ◽  
Duggina Pragathi ◽  
Kotakadi Venkata Subbaiah ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Farhat Ali Khan ◽  
Muhammad Zahoor ◽  
Abdul Jalal ◽  
Aziz Ur Rahman

Silver nanoparticles ofZiziphus nummularialeaves extract were synthesized and were characterized by UV-Visible spectrophotometry, particle size analyzer, X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), SEM, TGA, and EDX. The XRD pattern reveals the FCC structure of Ag nanoparticles. FTIR spectra confirmed the presence of Ag-O bonding. UV-Visible spectroscopy results confirmed the existence of Ag because of the particular peak in the region of 400–430. The SEM analysis confirmed spherical and uniform Ag nanoparticles with diameter ranging from 30 nm to 85 nm. The EDX analysis revealed strong signals in the silver region and confirmed the formation of silver nanoparticles. The antioxidant potential and antifungal and antimicrobial potential of the leaf extract and silver nanoparticles were also determined. The antioxidant property was determined using DPPH assay. The antibacterial, antifungal, and antioxidant properties were better for the silver nanoparticles than the aqueous leaf extract. The minimum inhibitory concentration (MIC), minimum bactericidal (MBC), and minimum fungicidal concentration (MFC) of plant extract and prepared silver nanoparticles were also tested. The hair growth properties of plant extracts and their respective nanoparticles were observed and good results were noted for nanoparticles as compared to the leaf extract.


Sign in / Sign up

Export Citation Format

Share Document