scholarly journals Green Synthesis of Silver Nanoparticles by UsingZiziphus nummulariaLeaves Aqueous Extract and Their Biological Activities

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Farhat Ali Khan ◽  
Muhammad Zahoor ◽  
Abdul Jalal ◽  
Aziz Ur Rahman

Silver nanoparticles ofZiziphus nummularialeaves extract were synthesized and were characterized by UV-Visible spectrophotometry, particle size analyzer, X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), SEM, TGA, and EDX. The XRD pattern reveals the FCC structure of Ag nanoparticles. FTIR spectra confirmed the presence of Ag-O bonding. UV-Visible spectroscopy results confirmed the existence of Ag because of the particular peak in the region of 400–430. The SEM analysis confirmed spherical and uniform Ag nanoparticles with diameter ranging from 30 nm to 85 nm. The EDX analysis revealed strong signals in the silver region and confirmed the formation of silver nanoparticles. The antioxidant potential and antifungal and antimicrobial potential of the leaf extract and silver nanoparticles were also determined. The antioxidant property was determined using DPPH assay. The antibacterial, antifungal, and antioxidant properties were better for the silver nanoparticles than the aqueous leaf extract. The minimum inhibitory concentration (MIC), minimum bactericidal (MBC), and minimum fungicidal concentration (MFC) of plant extract and prepared silver nanoparticles were also tested. The hair growth properties of plant extracts and their respective nanoparticles were observed and good results were noted for nanoparticles as compared to the leaf extract.

2020 ◽  
Vol 71 (10) ◽  
pp. 50-57
Author(s):  
Kamran Mehdi ◽  
Wajid Rehman ◽  
Obaid-Ur-rahman Abid ◽  
Srosh Fazil ◽  
Muhammad Sajid ◽  
...  

The aim of the present study is to search out nontoxic silver nanoparticles synthesized from the leaf extract of two plants Ajuga parviflora Benth and Digera muricata for antimicrobial activity. The plants used in this investigation are rich in alkaloids, flavonoids, steroids, terpenoids, protein, amino acids, carbohydrate, quninones, phenols and tannins. The formation of nanoparticles were confirmed by UV/Visible spectroscopy, peaks at 423nm for Ajuga parviflora Benth and 408nm for Digera muricata. The morphology of the silver nanoparticles was established through state of the art spectroscopic tools. SEM analysis reveals average size of AgNPs 18 nm for Digera muricata and 22 nm for Ajuga parviflora Benth respectively while transmission electron microscopy confirms that AgNPs are spherical in shape. The synthesized nanoparticles were subjected to Escherichia coli, Staphylococcus aureus, Salmonella typhimurium and Pseudomonas aeruginosa. The results suggest that the silver nanoparticles have promising activity against all the bacterial strains and can be used an effective bactericides.


2013 ◽  
Vol 1 (04) ◽  
pp. 16-24 ◽  
Author(s):  
Anu Kumar ◽  
Kuldeep Kaur ◽  
Sarika Sharma

The present study reports the synthesis of silver nanoparticle using Morus nigra leaf extract were used as reducing agent for reduction of silver nitrate solution. The synthesis of silver nanoparticles was analyzed by UV-Visible spectroscopy, Scanning Electron Microscopy. The SEM analysis has shown that size of silver nanoparticles synthesized from leaves extract of M.nigra was 200 nm and seems to be spherical in morphology. Morphology of chemically synthesized silver nanoparticles is nearly spherical and of size ranges from 300-500 nm. The average particle size analyzed from SEM analysis was observed to be 350 nm. This article has discussed the synthesis of silver nanoparticles generated from plant extract, characterization and antibacterial analysis. In this study the antibacterial activity was examined against six MTCC cultures collected from IMTECH Chandigarh, Including both gram positive and gram negative bacteria such as P.aeruginosa, S.aureus, B.subtilis, E.coli, P.flourescens and Streptococus mutans. Out of these strains the antimicrobial activity of the silver nanoparticles showed maximum zone of inbhition against P.flourescens (22 mm), P.aeruginosa (19 mm), S.aureus (18 mm) and least effective against E.coli (15mm). In contrast chemically synthesized silver nanoparticles were found most effective against S.aureus (13 mm) and B.subtilis (12mm) and almost ineffective against Streptococcus mutans (6 mm) and P.flourescens (4 mm). In the concluding remarks, the silver nanoparticles synthesized using M.nigra leaves extract would be a better antimicrobial effective against various bacterial species.


2012 ◽  
Vol 1371 ◽  
Author(s):  
M.I. Hernández-Castillo ◽  
O. Zaca-Moran ◽  
P. Zaca-Moran ◽  
M. Rojas-López ◽  
V.L. Gayou ◽  
...  

ABSTRACTBy using the citrate reduction procedure we have synthesized Ag nanoparticles, applying several conditions of preparation, being after characterized by UV-visible spectrophotometry. Following a logical sequence, the starting experiment was realized varying the reaction time, after that it was varied the concentration of the reductor agent, and finally it was varied the volume of the reductor agent. According to this methodology, TEM measurements show that firstly we have nanostructures with different shape and size, whereas in the last part of the experiment we have Ag nanoparticles with homogeneous shape and size.


Author(s):  
Sruthi Radhakrishnan

Green route for the synthesis of nanoparticles has become more acceptable than the other chemical as well as biological route. In the present study, silver nanoparticle is synthesized using ethanolic extract of Psidium guajava leaves. Further the synthesized silver nanoparticles were characterized by UV-Visible Spec, FT-IR, X-Ray Diffraction FESEM and E-DAX. The results of FT-IR provided evidence of the involvement of phytochemicals present in the leaf extract in the reduction of silver nitrate to silver nanoparticles. XRD confirmed the crystalline structure as well as shape of the synthesized nanoparticle as face-centred cubic. E-DAX profiling helped in determining the presence of elemental silver. The size of the nanoparticle procured by SEM analysis was found to be approximately 30-50 nm in size. Thus, the findings of this study showed that the plant assisted method for silver nanoparticle synthesis is more effective and further application level studies can shed lights on their use in healing of various human ailments.   


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2016 ◽  
Vol 5 (6) ◽  
Author(s):  
Brajesh Kumar ◽  
Kumari Smita ◽  
Luis Cumbal

AbstractThe present report summarizes an eco-friendly approach for the biosynthesis of silver nanoparticles (AgNPs) using the leaf extract of lavender. Initially, the synthesis of AgNPs was visually observed by the appearance of a wine red color. The optical property, morphology, and structure of as-synthesized AgNPs were characterized by UV-visible spectroscopy, dynamic light scattering, transmission electron microscopy, and X-ray diffraction analyses. All characterization data revealed the formation of crystalline and spherical AgNPs (Ag/Ag


2021 ◽  
Vol 9 ◽  
Author(s):  
Haiping Lu ◽  
Yi Zhang ◽  
Shan Xiong ◽  
Yinghong Zhou ◽  
Lan Xiao ◽  
...  

Background: As a wound dressing and barrier membrane, surface modification of polycaprolactone (PCL) is needed in order to achieve better biological activities. Exosomes derived from mesenchymal stem cells (MSCs) hold significant tissue regeneration promise. Silver nanoparticles (Ag) have been suggested as the surface modification technique for various medical devices.Materials and Methods: Ag and human bone marrow MSC (hBMSC)-derived exosomes (MSCs-exo) were used to modify the PCL scaffold. The impact of different scaffolds on immune cells and MSC proliferation and differentiation was further evaluated.Results: MSCs-exo exhibited cup-shaped morphology with a diameter around 100 nm. MSCs-exo were enriched with exosome marker CD81 and showed good internalization into recipient cells. 200 ng/ml Ag nanoparticles and MSCs-exo were further used to modify the PCL scaffold. The internalization study further indicated a similar releasing pattern of exosomes from Ag/MSCs-exo hybrid scaffolds into RAW264.7 and hBMSCs at 12 and 24 h, respectively. Macrophages play an important role during different stages of bone regeneration. The MTT and confocal microscopy study demonstrated no significant toxicity of exosome and/or Ag hybrid scaffolds for macrophages and MSCs. Inflammatory macrophages were further used to mimic the inflammatory environment. A mixed population of elongated and round morphology was noted in the exosome and Ag hybrid group, in which the proinflammatory genes and secretion of IL-6 and TNF-α were significantly reduced. In addition, the exosome and Ag hybrid scaffolds could significantly boost the osteogenic differentiation of hBMSCs.Discussion: This study highlights the possibility of using Ag nanoparticles and MSCs-exo to modify the PCL scaffold, thus providing new insight into the development of the novel immunomodulatory biomembrane.


Author(s):  
I. O. Salaudeen ◽  
M. O. Olajuwon ◽  
A. B. Ajala ◽  
T. O. Abdulkareem ◽  
S. A. Adeniyi ◽  
...  

This study investigated the synthesis, characterization and in vitro antioxidant activity of silver nanoparticles (AgNPs) using the aqueous leaf extract of Justicia carnea.  The aqueous leaf extract of J. carnea was used as a potential reducing and capping agent. To identify the compounds responsible for the reduction of silver ions, the functional groups present in the plant extract were subjected to FTIR. The in vitro antioxidant activity of synthesized nanoparticles was evaluated in terms of ferric reducing antioxidant potential (FRAP), DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2`-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) free radicals scavenging assays. The surface plasmon resonance confirmed the formation of AgNPs with maximum absorbance at kmax = 446 nm. FTIR revealed the biological macromolecules of J. carnea leaf extract involved in the synthesis and stabilization of AgNPs. UV-Visible spectrophotometer showed absorbance peak in the range of 436-446 nm. The silver nanoparticles exhibited moderate antioxidant activities compared to standard antioxidants (ascorbic acid and BHT). These results confirmed this protocol as simple, eco-friendly, nontoxic and an alternative for conventional physical and chemical methods. It can be concluded that J. carnea leaf extract can be used effectively in the production of potential antioxidant AgNPs which could be useful in various bio-applications such as cosmetics, food and biomedical industry.


2020 ◽  
Vol 9 (1) ◽  
pp. 203-210

The available controlling agents for mosquito vectors are chemical insecticides and the frequent usage of these insecticides creating resistance among mosquito vectors and environmental pollutions. Thus, the study was designed to synthesize and characterize the Ag nanoparticles (AgNPs) through a methanol leaf extract of Ocimum canum and find the larvicidal prospective of the AgNPs on the 4th instar larvae of Anopheles stephensi, Culex quinquefasciatus, and Aedes aegypti. The obtained outcomes show that the methanol leaf extract of O. canum was effectively reduced the silver ions and produce constant silver nanoparticles. It was characterized and confirmed by various scientific techniques such as UV-vis spectrum, XRD, SEM, FT-IR and EDaX. Various concentrations (10, 50, 150, 200, and 250 ppm) of characterized nanoparticles were tested for larvicidal activity. The premier larval death was observed at 24 h of treatment on A. aegypti with LC50= 17.03 ppm, followed by C. quinquefasciatus with LC50= 14.89 ppm of methanol extract of O. canum and no death was noticed on A. stephensi. The LD90 value for A. aegypti and C. quinquefasciatus were 24.18 & 20.65 ppm respectively. Hence, the Ag nanoparticles produced from methanol leaf extract of O. canum retains efficiency to control A. aegypti and C. quinquefasciatus. Thus, it might support partially to replace the chemical insecticide which used against these vectors and might contribute to reduce environmental pollution.


Sign in / Sign up

Export Citation Format

Share Document