Proximate composition of orange peel, pea peel and rice husk wastes and their potential use as antimicrobial agents and antioxidants

Author(s):  
Syeda Andleeb Zahra Naqvi ◽  
Ali Irfan ◽  
Saima Zaheer ◽  
Aeysha Sultan ◽  
Shanavas Shajahan ◽  
...  
2021 ◽  
Vol 248 ◽  
pp. 126746
Author(s):  
Łukasz Grabowski ◽  
Krzysztof Łepek ◽  
Małgorzata Stasiłojć ◽  
Katarzyna Kosznik-Kwaśnicka ◽  
Karolina Zdrojewska ◽  
...  

Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 852
Author(s):  
Tárcio S. Santos ◽  
Tarcisio M. Silva ◽  
Juliana C. Cardoso ◽  
Ricardo L. C. de Albuquerque-Júnior ◽  
Aleksandra Zielinska ◽  
...  

Silver nanoparticles are widely used in the biomedical and agri-food fields due to their versatility. The use of biological methods for the synthesis of silver nanoparticles has increased considerably due to their feasibility and high biocompatibility. In general, microorganisms have been widely explored for the production of silver nanoparticles for several applications. The objective of this work was to evaluate the use of entomopathogenic fungi for the biological synthesis of silver nanoparticles, in comparison to the use of other filamentous fungi, and the possibility of using these nanoparticles as antimicrobial agents and for the control of insect pests. In addition, the in vitro methods commonly used to assess the toxicity of these materials are discussed. Several species of filamentous fungi are known to have the ability to form silver nanoparticles, but few studies have been conducted on the potential of entomopathogenic fungi to produce these materials. The investigation of the toxicity of silver nanoparticles is usually carried out in vitro through cytotoxicity/genotoxicity analyses, using well-established methodologies, such as MTT and comet assays, respectively. The use of silver nanoparticles obtained through entomopathogenic fungi against insects is mainly focused on mosquitoes that transmit diseases to humans, with satisfactory results regarding mortality estimates. Entomopathogenic fungi can be employed in the synthesis of silver nanoparticles for potential use in insect control, but there is a need to expand studies on toxicity so to enable their use also in insect control in agriculture.


2018 ◽  
Vol 17 ◽  
pp. 50-56 ◽  
Author(s):  
Kelly J. Figueroa-Lopez ◽  
Margarita María Andrade-Mahecha ◽  
Olga Lucía Torres-Vargas

1997 ◽  
Vol 41 (10) ◽  
pp. 2312-2316 ◽  
Author(s):  
D M Citron ◽  
M D Appleman

Four hundred thirty-eight bacteria cultured from specimens of patients with serious intra-abdominal infections were tested by agar dilution against trovafloxacin and other quinolones and antimicrobial agents. Trovafloxacin inhibited 435 strains (99.3%) at < or =2 microg/ml. All the quinolones had similar activities against Enterobacteriaceae and Pseudomonas sp., but trovafloxacin showed superior activities against streptococci, enterococci, and anaerobic organisms. Because of its excellent in vitro activities against diverse bacteria, trovafloxacin has potential use as a single agent for polymicrobial infections.


2019 ◽  
Vol 1 ◽  
pp. 108-113
Author(s):  
B A Anhwange ◽  
I G Agbidye ◽  
B A Kyenge ◽  
P O Ngbede

The leaves of Jatropha tanjarensis were collected and assessed for their phytochemical compositions and antimicrobial activities using methanolic and hexane extracts as to determine the bioactive components and their effects on microorganisms. Also, the nutritional potential was investigated through the determination of proximate composition using standard procedures. The result of phytochemical screening indicated the presence of saponins, cardiac glycosides, reducing sugars, steroids, alkaloids and flavonoids in methanolic extract, the same observation was recorded in n-hexane extract except that reducing sugars were absent and phlobotannins were present. The antimicrobial activities of the leaves extract show that it have some antimicrobial properties. Results of the proximate composition and mineral analysis revealed that the plant is a good source of fiber and minerals. Therefore, leaves of Jatropha tanjarensisapart from being used as antimicrobial agents, can serve as good sources of fiber and minerals when used as vegetables.


2017 ◽  
Vol 35 (9) ◽  
pp. 967-977 ◽  
Author(s):  
Muzammil Anjum ◽  
Azeem Khalid ◽  
Samia Qadeer ◽  
Rashid Miandad

Catering waste and orange peel were co-digested using an anaerobic digestion process. Orange peel is difficult to degrade anaerobically due to the presence of antimicrobial agents such as limonene. The present study aimed to examine the feasibility of anaerobic co-digestion of catering waste with orange peel to provide the optimum nutrient balance with reduced inhibitory effects of orange peel. Batch experiments were conducted using catering waste as a potential substrate mixed in varying ratios (20–50%) with orange peel. Similar ratios were followed using green vegetable waste as co-substrate. The results showed that the highest organic matter degradation (49%) was achieved with co-digestion of catering waste and orange peel at a 50% mixing ratio (CF4). Similarly, the soluble chemical oxygen demand (sCOD) was increased by 51% and reached its maximum value (9040 mg l-1) due to conversion of organic matter from insoluble to soluble form. Biogas production was increased by 1.5 times in CF4 where accumulative biogas was 89.61 m3 t-1substrate compared with 57.35 m3 t-1substrate in the control after 80 days. The main reason behind the improved biogas production and degradation is the dilution of inhibitory factors (limonene), with subsequent provision of balanced nutrients in the co-digestion system. The tCOD of the final digestate was decreased by 79.9% in CF4, which was quite high as compared with 68.3% for the control. Overall, this study revealed that orange peel waste is a highly feasible co-substrate for anaerobic digestion with catering waste for enhanced biogas production.


2022 ◽  
Vol 19 ◽  
Author(s):  
Entesar A. Hassan ◽  
Salem E. Zayed ◽  
Al-Hassan S. Mahdy ◽  
Ahmed M. Abo-Bakr

Background: A series of new pyrimidines and thiazoles containing camphor moiety were synthesized under both conventional and microwave irradiation techniques. Methods: The condensation of camphor either with aminoguanidine or thiosemicarbazide gives the camphor hydrazine carboximidiamide 2 and the camphor thiosemicarbazone 3, respectively. Refluxing of 3 with chloroacetonitrile afforded the camphor thiazol-4-imine 4. Compounds 2 and 4 were used as precursors for the synthesis of target products. Results: The reaction of 2 with different species such as arylidene malononitrile, acetylacetone, and ethyl acetoacetate gave the corresponding camphor pyrimidine derivatives 5a,b-7 while refluxing of compound 4 with different reagents e.g. aldehydes, isatin, ninhydrin, acetic anhydride, benzene sulphonyl chloride, and p-nitro-benzoyl chloride afforded the camphor thiazole derivatives 8a-d-13, respectively. Conclusion: A comparison between the conventional way and the eco-friendly microwave irradiation method occurred in the synthesis of the same compounds, which the latter was more efficient. The elemental analysis, FT-IR, 1H NMR, 13C NMR, and Mass spectra confirm the structures of the obtained new compounds. The potential use of some selected derivatives as antimicrobial agents was investigated and gave promising results


Sign in / Sign up

Export Citation Format

Share Document