An efficient protocol for the synthesis of new camphor pyrimidine and camphor thiazole derivatives using conventional and microwave irradiation techniques and in vitro evaluation as potential antimicrobial agents

2022 ◽  
Vol 19 ◽  
Author(s):  
Entesar A. Hassan ◽  
Salem E. Zayed ◽  
Al-Hassan S. Mahdy ◽  
Ahmed M. Abo-Bakr

Background: A series of new pyrimidines and thiazoles containing camphor moiety were synthesized under both conventional and microwave irradiation techniques. Methods: The condensation of camphor either with aminoguanidine or thiosemicarbazide gives the camphor hydrazine carboximidiamide 2 and the camphor thiosemicarbazone 3, respectively. Refluxing of 3 with chloroacetonitrile afforded the camphor thiazol-4-imine 4. Compounds 2 and 4 were used as precursors for the synthesis of target products. Results: The reaction of 2 with different species such as arylidene malononitrile, acetylacetone, and ethyl acetoacetate gave the corresponding camphor pyrimidine derivatives 5a,b-7 while refluxing of compound 4 with different reagents e.g. aldehydes, isatin, ninhydrin, acetic anhydride, benzene sulphonyl chloride, and p-nitro-benzoyl chloride afforded the camphor thiazole derivatives 8a-d-13, respectively. Conclusion: A comparison between the conventional way and the eco-friendly microwave irradiation method occurred in the synthesis of the same compounds, which the latter was more efficient. The elemental analysis, FT-IR, 1H NMR, 13C NMR, and Mass spectra confirm the structures of the obtained new compounds. The potential use of some selected derivatives as antimicrobial agents was investigated and gave promising results

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
G. Kiran ◽  
T. Maneshwar ◽  
Y. Rajeshwar ◽  
M. Sarangapani

A series of β-Isatin aldehyde-N,N′-thiocarbohydrazone derivatives were synthesized and assayed for theirin vitroantimicrobial and antioxidant activity. The new compounds were characterized based on spectral (FT-IR, NMR, MS) analyses. All the test compounds possessed a broad spectrum of activity having MIC values rangeing from 12.5 to 400 μg/ml against the tested microorganisms. Among the compounds3e,3jand3nshow highest significant antimicrobial activity. The free radical scavenging effects of the test compounds against stable free radical DPPH (α,α-diphenyl-β-picryl hydrazyl) and H2O2were measured spectrophotometrically. Compounds3j,3n,3l, and3e, respectively, had the most effective antioxidant activity against DPPH and H2O2scavenging activity.


Antibiotics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 852
Author(s):  
Tárcio S. Santos ◽  
Tarcisio M. Silva ◽  
Juliana C. Cardoso ◽  
Ricardo L. C. de Albuquerque-Júnior ◽  
Aleksandra Zielinska ◽  
...  

Silver nanoparticles are widely used in the biomedical and agri-food fields due to their versatility. The use of biological methods for the synthesis of silver nanoparticles has increased considerably due to their feasibility and high biocompatibility. In general, microorganisms have been widely explored for the production of silver nanoparticles for several applications. The objective of this work was to evaluate the use of entomopathogenic fungi for the biological synthesis of silver nanoparticles, in comparison to the use of other filamentous fungi, and the possibility of using these nanoparticles as antimicrobial agents and for the control of insect pests. In addition, the in vitro methods commonly used to assess the toxicity of these materials are discussed. Several species of filamentous fungi are known to have the ability to form silver nanoparticles, but few studies have been conducted on the potential of entomopathogenic fungi to produce these materials. The investigation of the toxicity of silver nanoparticles is usually carried out in vitro through cytotoxicity/genotoxicity analyses, using well-established methodologies, such as MTT and comet assays, respectively. The use of silver nanoparticles obtained through entomopathogenic fungi against insects is mainly focused on mosquitoes that transmit diseases to humans, with satisfactory results regarding mortality estimates. Entomopathogenic fungi can be employed in the synthesis of silver nanoparticles for potential use in insect control, but there is a need to expand studies on toxicity so to enable their use also in insect control in agriculture.


2021 ◽  
pp. 1-10
Author(s):  
Ibrahim Erden ◽  
Betül Karadoğan ◽  
Fatma Aytan Kılıçarslan ◽  
Göknur Yaşa Atmaca ◽  
Ali Erdoğmuş

This work describes the synthesis, spectral and fluorescence properties of bis 4-(4-formyl-2,6-dimethoxyphenoxy) substituted zinc (ZnPc) and magnesium (MgPc) phthalocyanines. The new compounds have been characterized by elemental analysis, UV-Vis, FT-IR, 1H-NMR and mass spectra. Afterward, the effects of including metal ion on the photophysicochemical properties of the complexes were studied in biocompatible solvent DMSO to analyze their potential to use as a photosensitizer in photodynamic therapy (PDT). The fluorescence and singlet oxygen quantum yields were calculated as 0.04–0.15 and 0.70–0.52 for ZnPc and MgPc, respectively. According to the results, MgPc has higher fluorescence quantum yield than ZnPc, while ZnPc has higher singlet oxygen quantum yield than MgPc. The results show that the synthesized complexes can have therapeutic outcomes for cancer treatment.


Author(s):  
Aseel Alsarahni ◽  
Zuhair Muhi Eldeen ◽  
Elham Al-kaissi ◽  
Ibrahim Al- Adham ◽  
Najah Al-muhtaseb

<p><strong>Objective: </strong>To design and synthesize amino acetylenic and thiocarbonate of 2-mercapto-1,3-benthiazoles as potential antimicrobial agents.</p><p><strong>Methods: </strong>A new series of 2-{[4-(t-amino-1-yl) but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole derivatives (AZ1-AZ6), and S-1,3-benzothiazol-2-yl-O-alkyl carbonothioate derivatives were synthesised, with the aim that the target compounds show new and potential antimicrobial activity. The elemental analysis was indicated by the EuroEA elemental analyzer, and biological characterization was via IR, <sup>1</sup>H-NMR, [13]C-NMR, DSC were determined with the aid of Bruker FT-IR and Varian 300 MHz spectrometer using DMSO-d<sub>6</sub> as a solvent.<em> </em><em>In vitro </em>antimicrobial activity, evaluation was done for the synthesised compounds, by agar diffusion method and broth dilution test. The minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were determined. <em></em></p><p><strong>Results: </strong>The IR, <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, DSC and elemental analysis were consistent with the assigned structures. Compound of 2-{[4-(4-methylpiperazin-1-yl)but-2-yn-1-yl] sulfanyl}-1,3-benzothiazole (AZ1), 2-{[4-(2-methylpiperidin-1-yl)but-2-yn-1-yl]sulfanyl}-1,3-benzothiazole (AZ2), 2-{[4-(piperidin-1-yl) but-2-yn-1-yl]sulfanyl}-1, 3-benzothiazole (AZ6), S-1,3-benzothiazol-2-yl-O-ethyl carbonothioate (AZ7), and S-1,3-benzothiazol-2-yl-O-(2-methylpropyl) carbonothioate (AZ9) showed the highest antimicrobial activity against <em>Pseudomonas aeruginosa </em>(<em>P. aeruginosa</em>), AZ-9 demonstrated the highest antifungal activity against <em>Candida albicans </em>(<em>C. albicans</em>), with MIC of 31.25 µg/ml.</p><p><strong>Conclusion: </strong>These promising results promoted our interest to investigate other structural analogues for their antimicrobial activity further.</p>


2019 ◽  
Vol 26 (05) ◽  
pp. 1850184 ◽  
Author(s):  
C. THANGAMANI ◽  
M. PONNAR ◽  
P. PRIYADHARSHINI ◽  
P. MONISHA ◽  
S. S. GOMATHI ◽  
...  

Nickel-substituted copper oxide nanoparticles at various concentrations were synthesized by the microwave irradiation technique. The consequence of nickel doping on crystal structure, optical properties, and magnetic properties was examined by means of X-ray diffractometer, ultraviolet-visible spectrometer, Fourier transform infrared (FT-IR) spectrometer, transmission electron microscope, and vibrating sample magnetometer (VSM). X-ray diffraction analysis shows that the samples are monoclinic and their crystallite size varies from 25[Formula: see text]nm to 42[Formula: see text]nm, and lattice constant significantly increases with nickel concentration. Additional increase of nickel content (7%) decreases the lattice constant. TEM micrograph witnessed that the prepared nanoparticles were sphere-shaped and the particle distribution is in the range between 20 and 40[Formula: see text]nm. Bandgap measurement reveals that both undoped and nickel-doped copper oxides are direct bandgap semiconductor materials with bandgaps of 3.21 and 3.10[Formula: see text]eV, respectively, FT-IR spectra of the synthesized samples confirmed the nickel doping. VSM studies confirmed the ferromagnetic behavior of the synthesized samples at room temperature. The results revealed that the nickel-doped copper oxide nanoparticles synthesized via the microwave irradiation method exhibit better magnetic properties than the undoped copper oxide.


2020 ◽  
Vol 42 (5) ◽  
pp. 746-746
Author(s):  
Murat Saracoglu Murat Saracoglu ◽  
Zulbiye Kokbudak Zulbiye Kokbudak ◽  
M Izzettin Yilmazer and Fatma Kandemirli M Izzettin Yilmazer and Fatma Kandemirli

Pyrimidine derivatives have biological and pharmacological properties. Therefore, in this study we focused on the synthesis various Pyrimidine derivatives to make noteworthy contributions this class of heterocyclic compounds. In the present study, the new compounds (4-6) were obtained by the reactions of 1-amino-5-benzoyl-4-phenylpyrimidin-2(1H)-one (1), 1-amino-5-(4-methylbenzoyl)-4-(4-methylphenyl)pyrimidin-2(1H)-one (2) and 1-amino-5-(4-methoxybenzoyl)-4-(4-methoxyphenyl)pyrimidin-2(1H)-one (3) with dimethyl acetylenedicarboxylate. The structures of these compounds were proved by elemental analysis, FT-IR, 1H and 13C-NMR spectra. In addition to, quantum chemical calculations were made to find molecular properties of the pyrimidin-1(2H)-ylaminofumarate derivatives (4-6) by using DFT/B3LYP method with 6-311++G(2d,2p) basis set. Quantum chemical features such as EHOMO, ELUMO, energy gap, ionization potential, chemical hardness, chemical softness, electronegativity etc. values for gas and solvent phase of neutral molecules were calculated and discussed.


Author(s):  
Shamo Zokhrab Tapdiqov

Doxycycline was loaded with synthesized micelles composed of methyl Poly (ethylene glycol-block-poly (L-alanine–co–L-aspartate), or mPEG–Ala–Asp, and then characterized as a drug delivery carrier. The synthesis of the temperature-sensitive mPEG–Ala–Asp block copolymer was carried out by two-step ring-opening polymerization: firstly, the mPEG reacts with L-alanine N-carboxylic anhydride, and secondly the resulting mPEG–Ala reacts with benzyl aspartate N-carboxylic anhydride. The molecular structure of the copolymers obtained was determined by FT-IR and NMR spectroscopy methods and the micelles were characterized by SEM, TEM and DLS, respectively. The controlled release of Dox from hydrogel in the presence of PBS (8 to 9% by weight) lasts 6 to 7 days exhibiting stable release rates. The drug release mechanisms were studied: Higuchi and zero order models. The results and correlation coefficients applied to the Higuchi and zero-order models. The findings show the potential use of mPEG–Ala–Asp as an effective depot matrix to deliver anthracycline class drugs.


2019 ◽  
Vol 6 (1) ◽  
pp. 61-70
Author(s):  
Navin Patel ◽  
Sabir Pathan ◽  
Hetal I. Soni

Background: For rapid and sustainable synthesis, microwave irradiation method is serviceable. This present study deals with the preparation of oxadiazole and pyridine bearing 1,2,3,4- tetrahydro pyrimidine derivatives by microwave irradiation. Objective: The present study aims to carry out rapid synthesis of chloro-acetamides of oxadiazoles of Biginelli product and amino cyano derivative of pyridine by microwave-assisted heating. Our efforts are focused on the introduction of chemical diversity in the molecular framework in order to synthesize pharmacologically interesting compounds. Methods:: Microwave irradiation was used for the synthesis of 2-((3-cyano-4-(3,4-dichloro phenyl)- 6-(4-hydroxy-3-methoxyphenyl) pyridin-2-yl) amino)-N-(5-(substituted) -(6-methyl-2-oxo -1,2,3,4- tetrahydro pyrimidin-5-yl)-1,3,4-oxadiazol-2-yl)acetamide by using Biginelli reaction. New structural analogues were confirmed by spectral studies followed by their screening for in vitro antibacterial activity against Staphylococcus aureus, Staphylococcus Pyogenus, Escherichia coli and Pseudomonas aeruginosa bacterial strains and for antifungal activity against Candida albicans, Aspergillus niger and Aspergillus clavatus by micro-broth dilution method. In vitro antimycobacterial activity determined out against (Mycobacterium tuberculosis) H37Rv strain using Lowenstein-Jensen medium. Results: As compared to the conventional method, microwave irradiation method is advantageous for the synthesis of 1,2,3,4-tetrahydropyrimidin derivatives. Potent antimicrobial activities and antitubercular activity were found for some of the compounds. Conclusion: Microwave irradiation method provided an effective way to discover a novel class of antimicrobial and antituberculosis agents. 1,2,3,4-tetrahydropyrimidin derivatives showed improved antimicrobial and good antituberculosis activity.


1997 ◽  
Vol 41 (10) ◽  
pp. 2312-2316 ◽  
Author(s):  
D M Citron ◽  
M D Appleman

Four hundred thirty-eight bacteria cultured from specimens of patients with serious intra-abdominal infections were tested by agar dilution against trovafloxacin and other quinolones and antimicrobial agents. Trovafloxacin inhibited 435 strains (99.3%) at < or =2 microg/ml. All the quinolones had similar activities against Enterobacteriaceae and Pseudomonas sp., but trovafloxacin showed superior activities against streptococci, enterococci, and anaerobic organisms. Because of its excellent in vitro activities against diverse bacteria, trovafloxacin has potential use as a single agent for polymicrobial infections.


2020 ◽  
Vol 32 (6) ◽  
pp. 1437-1442
Author(s):  
Panneerselvam Kalaivani ◽  
Jayaraman Arikrishnan ◽  
Mannuthusamy Gopalakrishnan

In this study, a new series of (E)-N-(4-(3-(3,5-dialkylphenyl)acryloyl)phenyl)-2-(1H-1,2,4-triazol-1- yl)acetamide (32-41) was synthesized, characterized by FT-IR, 1H NMR, 13C NMR and Mass spectral analysis and evaluated for their in vitro antibacterial and antifungal activities. The docking study of the newly synthesized compounds was performed and results showed good binding mode in the active site of 1T9U protein. The zone of inhibition concentration was tested for the synthesized compounds against five bacterial and three fungal strains. Compounds 34 and 37 have good antibacterial activity. Compounds 3, 4 and 6 shows moderate inhibition against the antifungal activity.


Sign in / Sign up

Export Citation Format

Share Document