Role of Leaf Litter on the Incorporation of Copper-Containing Pesticides into Soils Under Fruit Production: a Review

2020 ◽  
Vol 20 (3) ◽  
pp. 990-1000 ◽  
Author(s):  
J. Tomás Schoffer ◽  
Sébastien Sauvé ◽  
Alexander Neaman ◽  
Rosanna Ginocchio
Keyword(s):  
2004 ◽  
Vol 82 (2) ◽  
pp. 214-218 ◽  
Author(s):  
Tetsuhiro Kawagoe ◽  
Nobuhiko Suzuki

Female flowers of some dioecious species are known to develop stamens with sterile pollen, a sexual system known as cryptic dioecy. A convincing hypothesis explaining this phenomenon is that stamens in female flowers attract pollinators and so ensure seed production. However, because this hypothesis has rarely been tested experimentally, we tested it in a cryptically dioecious species, Actinidia polygama (Sieb. et Zucc.) Planch. ex Maxim. Our findings show that pollinators do not show a consistent preference based on the sex of the flowers, and that the removal of stamens from female flowers results in a significant reduction in the frequency of insect visits and fruit production. These results strongly support the pollinator attraction hypothesis in A. polygama. Given the evident role of stamens in female flowers in A. polygama reproduction, we discuss why cryptic dioecy is a rare phenomenon.Key words: Actinidia polygama, cryptic dioecy, pseudopollen, pollinator attraction, unisexual flowers.


Insects ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Enrico Schifani ◽  
Cristina Castracani ◽  
Daniele Giannetti ◽  
Fiorenza Augusta Spotti ◽  
Roberto Reggiani ◽  
...  

Knowledge of the role of ants in many agroecosystems is relatively scarce, and in temperate regions the possibility to exploit ants as biocontrol agents for crop protection is still largely unexplored. Drawing inspiration from mutualistic ant–plant relationships mediated by extrafloral nectaries (EFNs), we tested the use of artificial nectaries (ANs) in order to increase ant activity on pear trees and to evaluate the effects on the arthropods, plant health and fruit production. While EFNs secrete a complex solution mainly composed of sugars and amino acids, ANs were filled with water and sucrose only. The results suggest that ANs can be used as manipulative instruments to increase ant activity over long periods of time. High ant activity was significantly linked to lower incidence of the pathogen fungus Venturia pyrina (pear scab) on pear leaves, and of the presence of Cydia pomonella (codling moth) caterpillars on pear fruit production. These results further encourage exploring underrated possibilities in the development of new tools for conservation biological control (CBC).


2013 ◽  
Vol 78 (3) ◽  
pp. 417-427 ◽  
Author(s):  
Estelle Bonnin ◽  
Marc Lahaye

Cell walls consist of polysaccharide assemblies (pectin, hemicelluloses and cellulose), whose structure and interactions vary depending on fruit genetic, and its stage and conditions of development. The establishment and the structural reorganization of the assemblies result from enzyme/protein consortia acting in muro. The texture of fleshy fruits is one of the major criteria for consumer choice. It impacts also post-harvest routes and transformation processes. Disassembly of fruit cell wall polysaccharides largely induces textural changes during ripening but the precise role of each polysaccharide and each enzyme remains unclear. The changes of cell wall polysaccharides during fruit ripening have mainly emphasized a modulation of the fine chemical structure of pectins by hydrolases, lyases, and esterases. This restructuring also involves a reorganization of hemicelluloses by hydrolases/transglycosydases and a modulation of their interactions with the cellulose by non-catalytic proteins such as expansin. Apple is the third fruit production in the world and is the subject of studies about fruit quality. This paper presents some of the results to date about the enzymes/proteins involved in this fruit ripening with a particular emphasis on apple.


2019 ◽  
Vol 279 ◽  
pp. 80-88
Author(s):  
Eva Samanta Ávila-Gómez ◽  
Virginia Meléndez-Ramírez ◽  
Ignacio Castellanos ◽  
Iriana Zuria ◽  
Claudia E. Moreno

2011 ◽  
Vol 80 (2) ◽  
pp. 133-141 ◽  
Author(s):  
Roman Luštrik ◽  
Martin Turjak ◽  
Simona Kralj-Fišer ◽  
Cene Fišer

Interspecific interactions between surface and subterranean species may be a key determinant for species distributions. Until now, the existence of competition (including predation) between these groups has not been tested. To assess the coexistence and potential role of interspecific interactions between surface Gammarus fossarum and subterranean Niphargus timavi, and to determine their micro distributions, we conducted a series of field and laboratory observations. We aimed to determine: (1) species substrate preference, (2) whether the presence of G. fossarum influences the habitat choice of N. timavi, and (3) possible predation effects on micro habitat choice of small juveniles. Throughout a small river in SW Slovenia, N. timavi was predominantly found in leaf litter and gravel, but rarely in sand. In the sand however, we exclusively found juveniles. In contrast, surface G. fossarum sheltered mainly in leaf litter. A similar, body size dependent, micro distribution was observed in G. fossarum, where small individuals were generally found in gravel and sand. The presence of G. fossarum affected the micro distribution of juvenile, but not adult, N. timavi. In the laboratory we observed predation and cannibalism in both species. Niphargus timavi, however, appeared to be a more efficient predator than G. fossarum. In particular, juvenile N. timavi were most vulnerable to preying by adults of both species. This probably affected the distribution of juvenile N. timavi that chose finer substrates when placed with adult individuals in an aquarium with granules of different size. To understand the distribution of subterranean species, the summed effect of intraspecific interactions, as well as surface – subterranean species interactions, in particular between individuals of different size, should be taken into account.


Author(s):  
Janusz Majewski

The aim of the paper was to determinate the importance of pollinating insects for food security in Poland. To assess this, there was estimated crop production without pollinators. The information published by the Institute of Horticulture and the Central Statistical Office was used as well as the literature on the subject. The results of the study indicate that insect pollinators play a key role in fruit production, absence of pollinators may result in a crop yield reduction about 80%. In terms of physical availability of food, Polish food security will be preserved even in the absence of insect pollinators. However, at the level of economic availability, food security may not be preserved without such pollinators, in particular in terms of fruit and food security associated with the consumption of properly balanced rations.


2006 ◽  
Vol 52 (8) ◽  
pp. 701-716 ◽  
Author(s):  
T Osono

The ecology of endophytic and epiphytic phyllosphere fungi of forest trees is reviewed with special emphasis on the development of decomposer fungal communities and decomposition processes of leaf litter. A total of 41 genera of phyllosphere fungi have been reported to occur on leaf litter of tree species in 19 genera. The relative proportion of phyllosphere fungi in decomposer fungal communities ranges from 2% to 100%. Phyllosphere fungi generally disappear in the early stages of decomposition, although a few species persist until the late stages. Phyllosphere fungi have the ability to utilize various organic compounds as carbon sources, and the marked decomposing ability is associated with ligninolytic activity. The role of phyllosphere fungi in the decomposition of soluble components during the early stages is relatively small in spite of their frequent occurrence. Recently, the roles of phyllosphere fungi in the decomposition of structural components have been documented with reference to lignin and cellulose decomposition, nutrient dynamics, and accumulation and decomposition of soil organic matter. It is clear from this review that several of the common phyllosphere fungi of forest trees are primarily saprobic, being specifically adapted to colonize and utilize dead host tissue, and that some phyllosphere fungi with marked abilities to decompose litter components play important roles in decomposition of structural components, nutrient dynamics, and soil organic matter accumulation.Key words: carbon cycle, community, endophyte, epiphyte, succession.


2009 ◽  
Vol 99 (5) ◽  
pp. 608-619 ◽  
Author(s):  
E. J. Fichtner ◽  
S. C. Lynch ◽  
D. M. Rizzo

Because the role of soil inoculum of Phytophthora ramorum in the sudden oak death disease cycle is not well understood, this work addresses survival, chlamydospore production, pathogen suppression, and splash dispersal of the pathogen in infested forest soils. Colonized rhododendron and bay laurel leaf disks were placed in mesh sachets before transfer to the field in January 2005 and 2006. Sachets were placed under tanoak, bay laurel, and redwood at three vertical locations: leaf litter surface, litter–soil interface, and below the soil surface. Sachets were retrieved after 4, 8, 20, and 49 weeks. Pathogen survival was higher in rhododendron leaf tissue than in bay tissue, with >80% survival observed in rhododendron tissue after 49 weeks in the field. Chlamydospore production was determined by clearing infected tissue in KOH. Moist redwood-associated soils suppressed chlamydospore production. Rain events splashed inoculum as high as 30 cm from the soil surface, inciting aerial infection of bay laurel and tanoak. Leaf litter may provide an incomplete barrier to splash dispersal. This 2-year study illustrates annual P. ramorum survival in soil and the suppressive nature of redwood-associated soils to chlamydospore production. Infested soil may serve as primary inoculum for foliar infections by splash dispersal during rain events.


Sign in / Sign up

Export Citation Format

Share Document