Production of Roller Compacted Concrete Made of Recycled Asphalt Pavement Aggregate and Recycled Concrete Aggregate and Silica Fume

Author(s):  
Ahmed Ashteyat ◽  
Ala’ Obaidat ◽  
Mehmet Kirgiz ◽  
Baiena AlTawallbeh
2021 ◽  
Vol 11 (22) ◽  
pp. 10901
Author(s):  
Salma Jaawani ◽  
Annalisa Franco ◽  
Giuseppina De Luca ◽  
Orsola Coppola ◽  
Antonio Bonati

Recycled materials from construction and demolition waste, such as recycled concrete aggregate, recycled brick aggregate, or recycled asphalt coming from the milling of road/motorway surfaces, are the key for a sustainable production of concrete. This paper reviews in particular the use of recycled asphalt pavement (RAP) aggregates in the production of concrete for structural uses. An overview is initially presented to describe the different areas of use of RAP, its definition and the limitations imposed by codes and standards. Relatively to the experimental data provided by the literature, a comparison with the Italian minimum requirements is also provided. Lastly, the influence of RAP on the characteristics of concrete such as compressive strength, flexural strength, Young’s Modulus and a study of durability are presented to define the possible applications of RAP in structural concrete in relation to the current allowable percentage of substitution.


2020 ◽  
Vol 12 (8) ◽  
pp. 3154 ◽  
Author(s):  
Hedelvan Emerson Fardin ◽  
Adriana Goulart dos Santos

This research aimed to investigate the mechanical and physical properties of Roller Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC mixtures with 200 kg/m³ of cement content and coarse natural aggregates in the concrete mixture. Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%). The compaction test, compressive strength, splitting tensile strength, flexural tensile strength, and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA) was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity, but the same was not observed in the splitting tensile strength. All RCCs displayed compressive strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards, the RCA added to RCC could be used for base layers.


Sign in / Sign up

Export Citation Format

Share Document