scholarly journals Roller Compacted Concrete with Recycled Concrete Aggregate for Paving Bases

2020 ◽  
Vol 12 (8) ◽  
pp. 3154 ◽  
Author(s):  
Hedelvan Emerson Fardin ◽  
Adriana Goulart dos Santos

This research aimed to investigate the mechanical and physical properties of Roller Compacted Concrete (RCC) used with Recycled Concrete Aggregate (RCA) as a replacement for natural coarse aggregate. The maximum dry density method was adopted to prepare RCC mixtures with 200 kg/m³ of cement content and coarse natural aggregates in the concrete mixture. Four RCC mixtures were produced from different RCA incorporation ratios (0%, 5%, 15%, and 30%). The compaction test, compressive strength, splitting tensile strength, flexural tensile strength, and modulus of elasticity, porosity, density, and water absorption tests were performed to analyze the mechanical and physical properties of the mixtures. One-way Analysis of Variance (ANOVA) was used to identify the influences of RCA on RCC’s mechanical properties. As RCA increased in mixtures, some mechanical properties were observed to decrease, such as modulus of elasticity, but the same was not observed in the splitting tensile strength. All RCCs displayed compressive strength greater than 15.0 MPa at 28 days, splitting tensile strength above 1.9 MPa, flexural tensile strength above 2.9 MPa, and modulus of elasticity above 19.0 GPa. According to Brazilian standards, the RCA added to RCC could be used for base layers.

2021 ◽  
Vol 20 (2) ◽  
pp. 277-290
Author(s):  
Hojjat Hosseinnezhad ◽  
◽  
Daniel Hatungimana ◽  
Şemsi Yazıcı ◽  
◽  
...  

The compressive strength, splitting tensile strength, pulse velocity, and drop weight impact resistance of roller-compacted concrete (RCC) mixtures containing recycled concrete aggregate (RCA) were investigated. The cement contents of the RCC mixtures were chosen as 150, 200 and 250 kg/m3. In addition to the control mixtures containing no RCA, 25, 50, 75, and 100 wt% of the crushed limestone aggregate was replaced with RCA. In this way, 15 RCC mixtures were prepared. The water content of RCC mixtures was determined by the maximum density method. The results showed that increasing the amount of recycled aggregate decreased the mechanical properties of the concrete. However, up to 25% replacement level, recycled aggregate had not a significant detrimental effect on the properties of RCC. Besides, the detrimental effect of RCA substitution was more pronounced in leaner mixtures and reduced by increasing the cement content of the RCC.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4612
Author(s):  
Dong Viet Phuong Tran ◽  
Abbas Allawi ◽  
Amjad Albayati ◽  
Thi Nguyen Cao ◽  
Ayman El-Zohairy ◽  
...  

This paper reports an evaluation of the properties of medium-quality concrete incorporating recycled coarse aggregate (RCA). Concrete specimens were prepared with various percentages of the RCA (25%, 50%, 75%, and 100%). The workability, mechanical properties, and durability in terms of abrasion of cured concrete were examined at different ages. The results reveal insignificant differences between the recycled concrete (RC) and reference concrete in terms of the mechanical and durability-related measurements. Meanwhile, the workability of the RC reduced vastly since the replacement of the RCA reached 75% and 100%. The ultrasound pulse velocity (UPV) results greatly depend on the porosity of concrete and the RC exhibited higher porosity than that of the reference concrete, particularly at the transition zone between the RCA and the new paste. Therefore, the sound transmission in the RC required longer times than that in the reference concrete. Moreover, a predictive equation relating the compressive strength to the UPV was developed.


2019 ◽  
Vol 9 (1) ◽  
pp. 3832-3835 ◽  
Author(s):  
A. R. Sandhu ◽  
M. T. Lakhiar ◽  
A. A. Jhatial ◽  
H. Karira ◽  
Q. B. Jamali

As the demand for concrete rises, the concrete materials demand increases. Aggregates occupy 75% of concrete. A vast amount of aggregates is utilized in concrete while aggregate natural resources are reducing. To overcome this problem, River Indus sand (RIS) and recycled concrete aggregate (RCA) were utilized as fine and coarse aggregate respectively. The aim of this experimental investigation is to evaluate the workability, and compressive and tensile strength of concrete utilizing RIS and RCA. Concrete samples of 1:2:4 proportions were cast, water cured for 7, 14, 21 and 28 days, and tested for compressive and tensile strength. The outcomes demonstrate that concrete possessed less workability when RIS and RCA were utilized. It was predicted that compressive strength of concrete would reduce up to 1.5% when 50% RIS and 50% RCA were utilized in concrete and 11.5% when natural aggregate was fully replaced by RIS and RCA, whereas the tensile strength decreased up to 1.60% when 50% by 12% respectively.


2019 ◽  
Vol 205 ◽  
pp. 519-528 ◽  
Author(s):  
Mahdi Koushkbaghi ◽  
Pedram Alipour ◽  
Behzad Tahmouresi ◽  
Ehsan Mohseni ◽  
Ashkan Saradar ◽  
...  

2012 ◽  
Vol 193-194 ◽  
pp. 1371-1375
Author(s):  
Yong San Cheng ◽  
Ke Qiang Yu ◽  
Shuang Xi Wang

In order to better understand the recycled concrete aggregate, it is essential to investigate the different mixture ratio in it. For determining the better mixture ratio of recycled concrete aggregate, the experimental investigation was conducted by making use of recycled concrete aggregate of different ratio instead of small stones in concrete, while maintaining the proportion of other raw materials of concrete unchanged. Its mechanical properties were also investigated. It is found that the better materials proportion of recycled concrete is that sand: recycled aggregate: water= 1: 1.8 : 2.1: 0.55.


1994 ◽  
Vol 370 ◽  
Author(s):  
Manouchehr Hassanzadeh

AbstractThis study has determined the fracture mechanical properties of 9 types of rock, namely fine-, medium- and coarse-grained granites, gneiss, quartzite, diabase, gabbro, and fine- and coarse-grained limestones. Test results show among other things that quartzite has the highest compressive strength and fracture energy, while diabase has the highest splitting tensile strength and modulus of elasticity. Furthermore, the strength and fracture energy of the interfacial zone between the rocks and 6 different mortars have been determined. The results showed that, in this investigation, the mortar/rock interfaces are in most cases weaker than both mortars and rocks.


2013 ◽  
Vol 372 ◽  
pp. 231-234
Author(s):  
Jeong Eun Kim ◽  
Wan Shin Park ◽  
Nam Yong Eom ◽  
Sun Woong Kim ◽  
Do Gyeum Kim ◽  
...  

In this study, some experimental investigations on the development of mechanical properties with age of high performance concrete (HPC) incorporated with blast furnace slag with fly ash or silica fume have been reported. Four different blended HPC were prepared in 0.40 water-binder ratio. At every four mixtures, the compressive strength, splitting tensile strength and modulus of elasticity at 7 and 28 days have been observed for HPC developments. Consequently, only replacement of silica fume significantly increases the mechanical properties in terms of compressive strength, splitting tensile strength and modulus of elasticity.


2016 ◽  
Vol 825 ◽  
pp. 11-14
Author(s):  
Jaromír Hrůza ◽  
Jaroslav Topič ◽  
Lukáš Hlubocký ◽  
Tomáš Plachý

This article deals with the usage of recycled concrete, which arises from demolitions of concrete structures. The aim is to find out what amount of recycled concrete as a binder influences final mechanical properties of the concrete. It was found that the gradual replacement of cement with recycled concrete causes reduction of the dynamic Young’s modulus and decreases the size of the increase in strength during the first 28 days. Overall, it is confirmed that recycled concrete may be used for concrete structures with regard to their purpose, importance and applicability.


Sign in / Sign up

Export Citation Format

Share Document