Evaluation Of Physical-Rheological Properties of Nano Titanium Dioxide Modified Asphalt Binder and Rutting Resistance of Modified Mixture

Author(s):  
Mahmoud Enieb ◽  
Akten Cengizhan ◽  
Sebnem Karahancer ◽  
Ahmed Eltwati
2016 ◽  
Vol 78 (7-3) ◽  
Author(s):  
Rosnawati Buhari ◽  
Chong Ai Ling ◽  
Mohd Ezree Abdullah ◽  
Siti Khatijah Abu Bakar ◽  
Nurul Hidayah Mohd Kamarudin ◽  
...  

The objectives of this study include determine the physical and rheological properties of the modified asphalt and also to examine the effectiveness of TiO2 in lowering the viscosity of the asphalt compared to control asphalt. Nano-titanium dioxide R15 of 2%, 4%, 6%, 8% and 10% by weight of asphalt has been incorporated into unaged 80/100 asphalt mix in order to improvise its performance. The asphalt modified and control were examine using penetration test, softening point test, storage stability test, dynamic shear rheometer test (DSR), rotational viscosity (RV) and rolling thin film oven test (RTFO). As a conclusion, the decrease in compaction and mixing temperature of modified asphalt compared to original asphalt shows an improvement in the viscosity of the asphalt. Through DSR, the nano-TiO2 modified asphalt does not degrade the performance grade when compared to control asphalt, where the values of complex modulus, G* does not differ much from each other for each of the concentration. This indicates that the modified asphalt is as competent as the original binder in resisting rutting at high temperature.


2016 ◽  
Vol 78 (7-3) ◽  
Author(s):  
Rosnawati Buhari ◽  
Nur Fareesya Zabidi ◽  
Mohd Ezree Abdullah ◽  
Siti Khatijah Abu Bakar ◽  
Nurul Hidayah Mohd Kamarudin

The objectives of this study were to determine the blending parameters of coconut shell powder (CSP) modified asphalt binder and to evaluate the rheological properties of CSP modified asphalt binder. CSP of 2%, 4%, 6%, 8% and 10% by weight of asphalt have been incorporated into an unaged 80/100 asphalt mix in order to improve its performance. The influence of the additives on the physical and rheological properties was evaluated with penetration test, softening point, storage stability, dynamic shear rheometer test (DSR), and Field Emission Scanning Electron Microscope (FESEM). The aging of asphalt binders was simulated in a laboratory by using Rotational Thin Film Oven (RTFO). The results showed that the addition of CSP into virgin binder was decreasing the penetration value and increasing the softening point temperature compared to the original binder. On the rheological effect, for unaged modified binder, higher CSP resulted higher G*/sin δ especially at lower temperature compared to the unaged control binder. Besides, for the aged modified binder, stiffness was lower than the control aged binder for all temperature.


2017 ◽  
Vol 35 (7) ◽  
pp. 641-646 ◽  
Author(s):  
Fereidoon Moghadas Nejad ◽  
Hossein Nazari ◽  
Koorosh Naderi ◽  
Fariba Karimiyan Khosroshahi ◽  
Mostafa Hatefi Oskuei

2020 ◽  
Vol 21 (sup1) ◽  
pp. S140-S154 ◽  
Author(s):  
Siyu Chen ◽  
Dongdong Ge ◽  
Fangyuan Gong ◽  
Zhanping You ◽  
Aboelkasim Diab ◽  
...  

2019 ◽  
Vol 5 (9) ◽  
pp. 1929-1940
Author(s):  
Hussein Burhan Raof ◽  
Mohammed Qadir Ismael

The action of high repeated trucks load associated with dramatically elevated ambient temperatures leads to the most harmful distress in asphalt pavements occurred in Iraq known as rutting. Essentially, it is produced from the accumulation of irrecoverable strains, which mainly occurred in the asphalt layers. That visually demonstrated as a longitudinal depression in the wheel paths as well as small upheavals to the sides. Poly Phosphoric Acid (PPA) has been used as a means of producing modified asphalt binders and the interest to use it has increased in recent years. The PPA provides modified asphalt binder, which is relatively cheaply produced compared to polymer-modified asphalt. In this paper, PPA was used by three-percentages 1, 2 and 3 % of the weight of asphalt binder. Two asphalt binder grades were used in this study, 40-50 and 60 -70.  The evaluation process based on conducting Marshall Test, Compressive strength test and the Wheel Tracking test. The optimum asphalt content was determined for eight asphalt mixture. The results of the index of retained strength of modified asphalt were slightly increased compared with conventional mixtures. The rut depth was determined by using wheel tracking device at different temperature (45 and 55 ºC) for each asphalt mixture under 10000 cycles and the results showed that modified asphalt with PPA produced mixtures with more rutting resistance than conventional asphalt mixture. Moreover, the effect of PPA on rutting resistance for asphalt grade 60-70 was higher than asphalt grade 40-50.


2015 ◽  
Vol 76 (9) ◽  
Author(s):  
E. Shaffie ◽  
J. Ahmad ◽  
A. K. Arshad ◽  
D. Kamarun

In this paper, the effects of nanopolyacrylate (NP) in binder modification on the empirical and rheological characteristics of the conventional binder were explored. The empirical and rheological binder properties were characterized using penetration, softening point, viscosity and dynamic shear rheometer (DSR) respectively.  These testings have become useful methods in characterizing of the binder performance on the pavement. The results indicated that NP polymer modification improved the physical properties of the conventional binder such as; penetration, softening point and temperature susceptibility. The results of viscosity test show that the NP polymer modified binder is more viscous than unmodified binder where viscosity increases with the increment of polymer content. The DSR results indicate that the NP polymer improves rheological properties of conventional binder, i.e. increasing the complex shear modulus (G∗) values and rutting parameters (G∗/sin δ), as well as decreasing the phase angle (δ) values. Therefore, it can be concluded that NP polymers considerably improves elastic properties and rutting resistance of binder and thus could be used for enhancing the asphalt pavement performance.


Sign in / Sign up

Export Citation Format

Share Document