scholarly journals Effect of PolyPhosphoric Acid on Rutting Resistance of Asphalt Concrete Mixture

2019 ◽  
Vol 5 (9) ◽  
pp. 1929-1940
Author(s):  
Hussein Burhan Raof ◽  
Mohammed Qadir Ismael

The action of high repeated trucks load associated with dramatically elevated ambient temperatures leads to the most harmful distress in asphalt pavements occurred in Iraq known as rutting. Essentially, it is produced from the accumulation of irrecoverable strains, which mainly occurred in the asphalt layers. That visually demonstrated as a longitudinal depression in the wheel paths as well as small upheavals to the sides. Poly Phosphoric Acid (PPA) has been used as a means of producing modified asphalt binders and the interest to use it has increased in recent years. The PPA provides modified asphalt binder, which is relatively cheaply produced compared to polymer-modified asphalt. In this paper, PPA was used by three-percentages 1, 2 and 3 % of the weight of asphalt binder. Two asphalt binder grades were used in this study, 40-50 and 60 -70.  The evaluation process based on conducting Marshall Test, Compressive strength test and the Wheel Tracking test. The optimum asphalt content was determined for eight asphalt mixture. The results of the index of retained strength of modified asphalt were slightly increased compared with conventional mixtures. The rut depth was determined by using wheel tracking device at different temperature (45 and 55 ºC) for each asphalt mixture under 10000 cycles and the results showed that modified asphalt with PPA produced mixtures with more rutting resistance than conventional asphalt mixture. Moreover, the effect of PPA on rutting resistance for asphalt grade 60-70 was higher than asphalt grade 40-50.

2017 ◽  
Vol 2630 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Matheus S. Gaspar ◽  
Kamilla L. Vasconcelos ◽  
Amanda H. M. da Silva ◽  
Liedi L. B. Bernucci

Reflective cracking is a common issue with respect to rehabilitated asphalt pavements, especially when the rehabilitation is done by applying a hot-mix asphalt overlay on the existing damaged pavement. Several approaches can be adopted to delay reflective cracking. They include an increase of the overlay thickness and the use of a stress relief asphalt mixture (SRAM), which is a fine-graded, flexible, and thin asphalt interlayer. Because the efficiency of a SRAM is highly related to the properties of the asphalt binder used in the mixture, it is of interest to use a highly modified asphalt (HiMA) binder. This paper describes a field test comprising three sections at BR-116 (a heavily trafficked highway in Brazil). One of the rehabilitation strategies used for a cracked asphalt pavement was a 2.5-cm SRAM (produced with a HiMA binder) and 5-cm styrene–butadiene–styrene (SBS) hot-mix asphalt (HMA). The other two strategies were to apply SBS HMA overlays of different thicknesses (7.5 cm and 10.5 cm). The aim was to evaluate and compare the capability of these solutions to control reflective cracking. Rheological properties and multiple stress creep and recovery tests were performed on the asphalt binders, and the semicircular bending test was performed on the asphalt mixtures. The surface conditions were monitored, and the results for each section were compared. After a 29-month period, the section that received the interlayer had the lowest cracked area and showed better resistance than the overlays did to reflective cracking and better maintenance of the original thickness of the pavement.


2010 ◽  
Vol 168-170 ◽  
pp. 906-911
Author(s):  
Chuan Feng Zheng ◽  
Lei Wang ◽  
Da Jun Zhao

pavement performance of SEBS modified asphalt mixture are analyzed. Dynamic shear rhometer(DSR) experiments were performed to evaluate the rheology properties of SEBS modified asphalt binder and performance of SEBS modified asphalt mixture was evaluated based on laboratory experiments, experiments included: wheel tracking, moisture susceptibility, low-temperature beam bending and fatigue. The results shows that the rheology properties of SEBS modified asphalt binder are more ideal than SBS modified asphalt binder on anti-fatigue effect. Tensile stress ratio(TSR) of SEBS modified asphalt mixture increases 5.0%, tensile strength increases 6.1% and tensile strain increases 19.8%, though the dynamic stability(DS) decreases 3.1%, the fatigue life-span increases significantly compared with SBS modified asphalt mixture. It means that pavement performance of SEBS modified asphalt mixture is better than SBS modified asphalt mixture, and it is more applicable to be utilized in highway engineerings and some special engineerings such as bridge deck pavement that need anti-fatigue performance.


2019 ◽  
Vol 26 (1) ◽  
pp. 379-387
Author(s):  
Iuri S. Bessa ◽  
Márcia M. Takahashi ◽  
Kamilla L. Vasconcelos ◽  
Liedi L. B. Bernucci

AbstractThe addition of polymers on asphalt binders aims to enhance their performance, especially at high temperatures, which correspond to rutting resistance. The Superpave rutting parameter (|G*|/sinδ) has been considered to be inadequate to characterize the performance of modified materials, therefore the Multiple Stress Creep and Recovery (MSCR) test was developed, providing the parameter non-recoverable compliance (Jnr). This research has the main objective of correlating asphalt binders performance-based characterization with rutting resistance of asphalt mixtures, and presents results obtained for one conventional (50/70 penetration grade) and two modified asphalt binders (2.1% RET and 1.9% RET) regarding their rheological characteristics. With the use of the dynamic shear rheometer (DSR), master curves and MSCR results were obtained for the three binders. In addition, permanent deformation tests were performed on the asphalt mixtures by means of laboratory traffic simulation. The rutting characterization indicated higher permanent deformation resistance for the modified binders for the asphalt binder and the asphalt mixture testing. The main conclusions were that the use of modified binder reduced in approximately 50% the Jnr values and the rut depth; also, the asphalt binders’ characteristics were able to predict the asphalt mixtures rutting resistance.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Rong Chang ◽  
Aimin Sha ◽  
Pinxue Zhao ◽  
Songchang Huang ◽  
Cong Qi

Using modified asphalt binder is one of the most effective methods to solve the rutting problem of asphalt pavement, but the traditional G ∗ / sin     δ parameter is not enough to characterize the rutting resistance of modified asphalt in field use. In order to accurately evaluate the high temperature performance of asphalt and establish the relationship between the rutting resistance of binder and mixture, two kinds of matrix asphalt and three kinds of modified asphalt were selected for DSR and MSCR tests. G ∗ / sin     δ , nonrecoverable creep compliance Jnr, recovery rate R, and other parameters were used to characterize the permanent deformation resistance of the binder, and the correlation between these parameters and the results of rutting test was analyzed. The results show that Jnr3.2 can accurately characterize the permanent deformation resistance of asphalt, while the stress sensitivity index Jnrdiff is not applicable to all types of modified asphalt. In contrast, Jnrslope can better reflect the stress sensitivity of asphalt, and Jnrslope is significantly correlated with the results of rutting test.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Mahmoud Ameri ◽  
Mostafa Vamegh ◽  
Hamed Rooholamini ◽  
Farshad Haddadi

Rutting is one of the most common distresses in flexible pavements and can affect vehicle controlling features. Although asphalt binder constitutes a small percentage of the asphalt mixture, its properties play a crucial role in pavement performance and its rutting resistance. One way of improving binder properties and rutting resistance is to use additives. In this research, nanoclay and SBR polymer have been simultaneously used to modify 60–70 penetration binder to study rutting resistance of binder and asphalt mixture. To this end, the storage stability, rotational viscosity, DSR, and RCR tests on binder and marshal stability were performed, and dynamic creep and wheel track tests on asphalt mix were performed to assess rutting performance. The test and statistical analysis results indicated that nanoclay has considerably positive impact on rutting and elastic deformation of neat and SBR-modified asphalt binder and mixture.


2013 ◽  
Vol 721 ◽  
pp. 219-223
Author(s):  
Bang Yan Tang ◽  
Hui Yao ◽  
Yu Feng ◽  
Xu Dong Hu

The nanopowdered VP108 was selected and applied into the base asphalt binder and mixture. The Marshall binder and mixture tests were conducted to evaluate the mechanical and pavement performance of base and VP108 modified asphalt binders and mixtures. The test results present that the penetration, softening point, penetration index and ductility of VP108 modified asphalt binder improved compared to the base asphalt binder. The mixture test results display that the compression strength, water susceptibility, resilient modulus and cleavage strength of VP108 modified asphalt mixture enhance compared to the base asphalt mixture. Therefore, the overall performance of VP108 modified asphalt binder and mixture improves compared to the base asphalt binder and mixture, such as the high temperature performance, resilient modulus and water resistance property.


2014 ◽  
Vol 599 ◽  
pp. 182-186 ◽  
Author(s):  
Ling Pang ◽  
Peng Wang ◽  
Bo Li ◽  
Pan Pan ◽  
Shao Peng Wu

The performance of asphalt concrete is strongly dependent on the rheological properties of asphalt binders. In this paper, PAN carbon fiber was employed to improve the conductivity of asphalt mixture. To better understand the performance of conductive asphalt mixture, the present study investigated the rheological characteristics of asphalt binders containing PAN carbon fiber. Additionally, scanning electron microscopy (SEM) was used to elucidate the microstructure and interface reaction between the asphalt and the PAN carbon fiber. Experimental results showed that carbon fibers in the asphalt can overlap each other and form a three-dimensional space structure, which could transfer and buffer the stress. Moreover, the addition of PAN carbon fiber increases the complex shear modulus of modified asphalt binders, which means higher resistance to the permanent deformation. Furthermore, the reduction of phase angle implied the increment of elastic portion in the visco-elastic of carbon modified asphalt binder.


2021 ◽  
Vol 11 (19) ◽  
pp. 9242
Author(s):  
Xiaobing Chen ◽  
Yunfeng Ning ◽  
Yongming Gu ◽  
Ronglong Zhao ◽  
Jinhu Tong ◽  
...  

To investigate the influence of multiple cycles of aging and rejuvenation on the rheological, chemical, and morphological properties of styrene–butadiene–styrene (SBS)-modified asphalt-binders, the asphalt-binders were aged using two laboratory simulation methods, namely a rolling thin film oven (RTFO) test for short-term aging and pressure aging vessel (PAV) for long-term aging. The asphalt-binders were then rejuvenated with three types of rejuvenators (Type I, II, and III) with different dosages (i.e., 6%, 10%, and 14% for the first, second, and third rejuvenation, respectively). A dynamic shear rheometer (DSR) was then used to analyze the effect of rejuvenators on the rheological properties of all the asphalt-binders. The changes in the functional groups and microscopic morphology in the process of multiple aging and rejuvenation cycles were studied using Fourier transform infrared (FTIR) and atomic force microscopy (AFM). The results indicated that the three rejuvenators could soften the stiffness and restore the microstructures of the aged asphalt-binders in the process of repeated aging and rejuvenation from DSR and AFM testing. Considering the rutting and fatigue properties, the Type I rejuvenator exhibited the potential to achieve the desired rejuvenation effects under multiple rejuvenation cycles. During the multiple aging and rejuvenation cycles, the aging resistance of SBSMA decreased gradually from the FTIR results. This inherently limited the number of repeated rejuvenation cycles. This research is conducive to promoting the application of repeated penetrating rejuvenation.


Author(s):  
Moses Akentuna ◽  
Louay N. Mohammad ◽  
Sanchit Sachdeva ◽  
Samuel B. Cooper ◽  
Samuel B. Cooper

Moisture damage of asphalt mixtures is a major distress affecting the durability of asphalt pavements. The loaded wheel tracking (LWT) test is gaining popularity in determining moisture damage because of its ability to relate laboratory performance to field performance. However, the accuracy of LWT’s “pass/fail” criteria for screening mixtures is limited. The objective of this study was to evaluate the capability of the LWT test to identify moisture susceptibility of asphalt mixtures with different moisture conditioning protocols. Seven 12.5 mm asphalt mixtures with two asphalt binder types (unmodified PG 67-22 and modified PG 70-22), and three aggregate types (limestone, crushed gravel, and a semi-crushed gravel) were utilized. Asphalt binder and mixture samples were subjected to five conditioning levels, namely, a control; single freeze–thaw-; triple freeze–thaw-; MiST 3500 cycles; and MiST 7000 cycles. Frequency sweep at multiple temperatures and frequencies, and multiple stress creep recovery tests were performed to evaluate asphalt binders. LWT test was used to evaluate the asphalt mixture samples. Freeze–thaw and MiST conditioning resulted in an increase in stiffness in the asphalt binders as compared with the control. Further, freeze–thaw and MiST conditioning resulted in an increase in rut depth compared with the control asphalt mixture. The conditioning protocols evaluated were effective in exposing moisture-sensitive mixtures, which initially showed compliance with Louisiana asphalt mixture design specifications.


Sign in / Sign up

Export Citation Format

Share Document