scholarly journals On Algorithmic Descriptions and Software Implementations for Multi-objective Optimisation: A Comparative Study

2020 ◽  
Vol 1 (5) ◽  
Author(s):  
Shahin Rostami ◽  
Ferrante Neri ◽  
Kiril Gyaurski

Abstract Multi-objective optimisation is a prominent subfield of optimisation with high relevance in real-world problems, such as engineering design. Over the past 2 decades, a multitude of heuristic algorithms for multi-objective optimisation have been introduced and some of them have become extremely popular. Some of the most promising and versatile algorithms have been implemented in software platforms. This article experimentally investigates the process of interpreting and implementing algorithms by examining multiple popular implementations of three well-known algorithms for multi-objective optimisation. We observed that official and broadly employed software platforms interpreted and thus implemented the same heuristic search algorithm differently. These different interpretations affect the algorithmic structure as well as the software implementation. Numerical results show that these differences cause statistically significant differences in performance.

Author(s):  
Bryon Kucharski ◽  
Azad Deihim ◽  
Mehmet Ergezer

This research was conducted by an interdisciplinary team of two undergraduate students and a faculty to explore solutions to the Birds of a Feather (BoF) Research Challenge. BoF is a newly-designed perfect-information solitaire-type game. The focus of the study was to design and implement different algorithms and evaluate their effectiveness. The team compared the provided depth-first search (DFS) to heuristic algorithms such as Monte Carlo tree search (MCTS), as well as a novel heuristic search algorithm guided by machine learning. Since all of the studied algorithms converge to a solution from a solvable deal, effectiveness of each approach was measured by how quickly a solution was reached, and how many nodes were traversed until a solution was reached. The employed methods have a potential to provide artificial intelligence enthusiasts with a better understanding of BoF and novel ways to solve perfect-information games and puzzles in general. The results indicate that the proposed heuristic search algorithms guided by machine learning provide a significant improvement in terms of number of nodes traversed over the provided DFS algorithm.


Author(s):  
Nazmul Siddique ◽  
Hojjat Adeli

In the past three decades nature-inspired and meta-heuristic algorithms have dominated the literature in the broad areas of search and optimization. Harmony search algorithm (HSA) is a music-inspired population-based meta-heuristic search and optimization algorithm. The concept behind the algorithm is to find a perfect state of harmony determined by aesthetic estimation. This paper starts with an overview of the harmonic phenomenon in music and music improvisation used by musicians and how it is applied to the optimization problem. The concept of harmony memory and its mathematical implementation are introduced. A review of HSA and its variants is presented. Guidelines from the literature on the choice of parameters used in HSA for effective solution of optimization problems are summarized.


Sign in / Sign up

Export Citation Format

Share Document