Strict Hölder regularity for fractional order abstract degenerate differential equations

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Md. Mansur Alam ◽  
Shruti Dubey
2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Md Mansur Alam ◽  
Shruti Dubey ◽  
Dumitru Baleanu

AbstractWe know that interpolation spaces in terms of analytic semigroup have a significant role into the study of strict Hölder regularity of solutions of classical abstract Cauchy problem (ACP). In this paper, we first construct interpolation spaces in terms of solution operators in fractional calculus and characterize these spaces. Then we establish strict Hölder regularity of mild solutions of fractional order ACP.


Author(s):  
Khalid K. Ali ◽  
Mohamed A. Abd El salam ◽  
Emad M. H. Mohamed

AbstractIn this paper, a numerical technique for a general form of nonlinear fractional-order differential equations with a linear functional argument using Chebyshev series is presented. The proposed equation with its linear functional argument represents a general form of delay and advanced nonlinear fractional-order differential equations. The spectral collocation method is extended to study this problem as a discretization scheme, where the fractional derivatives are defined in the Caputo sense. The collocation method transforms the given equation and conditions to algebraic nonlinear systems of equations with unknown Chebyshev coefficients. Additionally, we present a general form of the operational matrix for derivatives. A general form of the operational matrix to derivatives includes the fractional-order derivatives and the operational matrix of an ordinary derivative as a special case. To the best of our knowledge, there is no other work discussed this point. Numerical examples are given, and the obtained results show that the proposed method is very effective and convenient.


Author(s):  
Akbar Zada ◽  
Sartaj Ali ◽  
Tongxing Li

AbstractIn this paper, we study an implicit sequential fractional order differential equation with non-instantaneous impulses and multi-point boundary conditions. The article comprehensively elaborate four different types of Ulam’s stability in the lights of generalized Diaz Margolis’s fixed point theorem. Moreover, some sufficient conditions are constructed to observe the existence and uniqueness of solutions for the proposed model. The proposed model contains both the integer order and fractional order derivatives. Thus, the exponential function appearers in the solution of the proposed model which will lead researchers to study fractional differential equations with well known methods of integer order differential equations. In the last, few examples are provided to show the applicability of our main results.


Sign in / Sign up

Export Citation Format

Share Document