A survey on various image processing techniques and machine learning models to detect, quantify and classify foliar plant disease

Author(s):  
Akruti Naik ◽  
Hetal Thaker ◽  
Dhaval Vyas
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3691
Author(s):  
Ciprian Orhei ◽  
Silviu Vert ◽  
Muguras Mocofan ◽  
Radu Vasiu

Computer Vision is a cross-research field with the main purpose of understanding the surrounding environment as closely as possible to human perception. The image processing systems is continuously growing and expanding into more complex systems, usually tailored to the certain needs or applications it may serve. To better serve this purpose, research on the architecture and design of such systems is also important. We present the End-to-End Computer Vision Framework, an open-source solution that aims to support researchers and teachers within the image processing vast field. The framework has incorporated Computer Vision features and Machine Learning models that researchers can use. In the continuous need to add new Computer Vision algorithms for a day-to-day research activity, our proposed framework has an advantage given by the configurable and scalar architecture. Even if the main focus of the framework is on the Computer Vision processing pipeline, the framework offers solutions to incorporate even more complex activities, such as training Machine Learning models. EECVF aims to become a useful tool for learning activities in the Computer Vision field, as it allows the learner and the teacher to handle only the topics at hand, and not the interconnection necessary for visual processing flow.


Author(s):  
Muhammad Nur Aiman Shapiee ◽  
Muhammad Ar Rahim Ibrahim ◽  
Mohd Azraai Mohd Razman ◽  
Muhammad Amirul Abdullah ◽  
Rabiu Muazu Musa ◽  
...  

India is an agricultural country where most of people are depends on the agriculture. When Plants are infected by the virus, fungus and bacteria, they are mostly seen on leaves and stems of the plants. Because of that, plants production is decreased also economy of the country is decreased. The farmer has to identify the disease and decide which pesticide will be used to control the disease in plants. To finding out which disease affect the plants, the farmer contacts the expert for the solution. The expert gives the advice based on its knowledge and information but sometimes seeking the expert advice is time consuming, expensive and may be not accurate. So, to solve this problem, the image processing techniques and Machine Learning algorithm like Neural Network, Fuzzy Logic and Support Vector Machine gives the better, accurate and affordable solution to control the plants disease than manual method.


2021 ◽  
Vol 2062 (1) ◽  
pp. 012009
Author(s):  
Sushreeta Tripathy

Abstract In the area of research, diagnosis of disease symptoms in the plants duly applying image processing methods is a matter of big concern. The need of the hour is to prepare an efficient plant disease diagnosis system that can help the farmers in their cultivation and farming. This work is an attempt to prepare a framework of plant disease diagnosis system by using the cotton plant leaves. The digital pictures of cotton leaves are obtained to undergo a set of image processing techniques. Thresholding based segmentation techniques are used to remove the region of interest (ROI) i.e., infected part from the enhanced images. Consequently, diseases are detected from the region of interest by using an accurate set of visual texture features. At last treatment actions are taken to supervise the diseases found in the plants. This work will help the farmer’s society to take effective measures to protect their crops from diseases.


Sign in / Sign up

Export Citation Format

Share Document