scholarly journals Interactive Artistic Multi-style Transfer

Author(s):  
Xiaohui Wang ◽  
Yiran Lyu ◽  
Junfeng Huang ◽  
Ziying Wang ◽  
Jingyan Qin

AbstractArtistic style transfer is to render an image in the style of another image, which is a challenge problem in both image processing and arts. Deep neural networks are adopted to artistic style transfer and achieve remarkable success, such as AdaIN (adaptive instance normalization), WCT (whitening and coloring transforms), MST (multimodal style transfer), and SEMST (structure-emphasized multimodal style transfer). These algorithms modify the content image as a whole using only one style and one algorithm, which is easy to cause the foreground and background to be blurred together. In this paper, an iterative artistic multi-style transfer system is built to edit the image with multiple styles by flexible user interaction. First, a subjective evaluation experiment with art professionals is conducted to build an open evaluation framework for style transfer, including the universal evaluation questions and personalized answers for ten typical artistic styles. Then, we propose the interactive artistic multi-style transfer system, in which an interactive image crop tool is designed to cut a content image into several parts. For each part, users select a style image and an algorithm from AdaIN, WCT, MST, and SEMST by referring to the characteristics of styles and algorithms summarized by the evaluation experiments. To obtain richer results, the system provides a semantic-based parameter adjustment mode and the function of preserving colors of content image. Finally, case studies show the effectiveness and flexibility of the system.

2021 ◽  
Vol 11 (7) ◽  
pp. 3290
Author(s):  
Yanru Lyu ◽  
Chih-Long Lin ◽  
Po-Hsien Lin ◽  
Rungtai Lin

Artificial Intelligence (AI) is becoming more popular in various fields, including the area of art creation. Advances in AI technology bring new opportunities and challenges in the creation, experience, and appreciation of art. The neural style transfer (NST) realizes the intelligent conversion of any artistic style using neural networks. However, the artistic style is the product of cognition that involving from visual to feel. The purpose of this paper is to study factors affecting audience cognitive difference and preference on artistic style transfer. Those factors are discussed to investigate the application of the AI generator model in art creation. Therefore, based on the artist’s encoding attributes (color, stroke, texture) and the audience’s decoding cognitive levels (technical, semantic, effectiveness), this study proposed a framework to evaluate artistic style transfer in the perspective of cognition. Thirty-one subjects with a background in art, aesthetics, and design were recruited to participate in the experiment. The experimental process consists of four style groups, including Fauvism, Expressionism, Cubism, and Renaissance. According to the finding in this study, participants can still recognize different artistic styles after transferred by neural networks. Besides, the features of texture and stroke are more impact on the perception of fitness than color. The audience may prefer the samples with high cognition in the semantic and effectiveness levels. The above indicates that through AI automated routine work, the cognition of the audience to artistic style still can be kept and transferred.


2022 ◽  
Vol 2022 ◽  
pp. 1-9
Author(s):  
R. Dinesh Kumar ◽  
E. Golden Julie ◽  
Y. Harold Robinson ◽  
S. Vimal ◽  
Gaurav Dhiman ◽  
...  

Humans have mastered the skill of creativity for many decades. The process of replicating this mechanism is introduced recently by using neural networks which replicate the functioning of human brain, where each unit in the neural network represents a neuron, which transmits the messages from one neuron to other, to perform subconscious tasks. Usually, there are methods to render an input image in the style of famous art works. This issue of generating art is normally called nonphotorealistic rendering. Previous approaches rely on directly manipulating the pixel representation of the image. While using deep neural networks which are constructed using image recognition, this paper carries out implementations in feature space representing the higher levels of the content image. Previously, deep neural networks are used for object recognition and style recognition to categorize the artworks consistent with the creation time. This paper uses Visual Geometry Group (VGG16) neural network to replicate this dormant task performed by humans. Here, the images are input where one is the content image which contains the features you want to retain in the output image and the style reference image which contains patterns or images of famous paintings and the input image which needs to be style and blend them together to produce a new image where the input image is transformed to look like the content image but “sketched” to look like the style image.


2021 ◽  
Author(s):  
Agustina Suarez ◽  
Romina Soledad Molina ◽  
Giovanni Ramponi ◽  
Ricardo Petrino ◽  
Luciana Bollati ◽  
...  

2022 ◽  
Vol 18 (2) ◽  
pp. 1-25
Author(s):  
Saransh Gupta ◽  
Mohsen Imani ◽  
Joonseop Sim ◽  
Andrew Huang ◽  
Fan Wu ◽  
...  

Stochastic computing (SC) reduces the complexity of computation by representing numbers with long streams of independent bits. However, increasing performance in SC comes with either an increase in area or a loss in accuracy. Processing in memory (PIM) computes data in-place while having high memory density and supporting bit-parallel operations with low energy consumption. In this article, we propose COSMO, an architecture for co mputing with s tochastic numbers in me mo ry, which enables SC in memory. The proposed architecture is general and can be used for a wide range of applications. It is a highly dense and parallel architecture that supports most SC encodings and operations in memory. It maximizes the performance and energy efficiency of SC by introducing several innovations: (i) in-memory parallel stochastic number generation, (ii) efficient implication-based logic in memory, (iii) novel memory bit line segmenting, (iv) a new memory-compatible SC addition operation, and (v) enabling flexible block allocation. To show the generality and efficiency of our stochastic architecture, we implement image processing, deep neural networks (DNNs), and hyperdimensional (HD) computing on the proposed hardware. Our evaluations show that running DNN inference on COSMO is 141× faster and 80× more energy efficient as compared to GPU.


Information ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 532
Author(s):  
Unai Elordi ◽  
Chiara Lunerti ◽  
Luis Unzueta ◽  
Jon Goenetxea ◽  
Nerea Aranjuelo ◽  
...  

In this paper, we tackle the problem of deploying face recognition (FR) solutions in heterogeneous Internet of Things (IoT) platforms. The main challenges are the optimal deployment of deep neural networks (DNNs) in the high variety of IoT devices (e.g., robots, tablets, smartphones, etc.), the secure management of biometric data while respecting the users’ privacy, and the design of appropriate user interaction with facial verification mechanisms for all kinds of users. We analyze different approaches to solving all these challenges and propose a knowledge-driven methodology for the automated deployment of DNN-based FR solutions in IoT devices, with the secure management of biometric data, and real-time feedback for improved interaction. We provide some practical examples and experimental results with state-of-the-art DNNs for FR in Intel’s and NVIDIA’s hardware platforms as IoT devices.


2021 ◽  
Author(s):  
Huawei Xu ◽  
Ming Liu ◽  
Delong Zhang

Using deep neural networks (DNNs) as models to explore the biological brain is controversial, which is mainly due to the impenetrability of DNNs. Inspired by neural style transfer, we circumvented this problem by using deep features that were given a clear meaning--the representation of the semantic content of an image. Using encoding models and the representational similarity analysis, we quantitatively showed that the deep features which represented the semantic content of an image mainly modulated the activity of voxels in the early visual areas (V1, V2, and V3) and these features were essentially depictive but also propositional. This result is in line with the core viewpoint of the grounded cognition to some extent, which suggested that the representation of information in our brain is essentially depictive and can implement symbolic functions naturally.


Sign in / Sign up

Export Citation Format

Share Document