Homing Endonucleases

Keyword(s):  
Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2001
Author(s):  
Jigeesha Mukhopadhyay ◽  
Georg Hausner

Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.


PLoS ONE ◽  
2014 ◽  
Vol 9 (10) ◽  
pp. e110852 ◽  
Author(s):  
Jia-Kun Liu ◽  
Wei-Hua Chen ◽  
Shuang-Xi Ren ◽  
Guo-Ping Zhao ◽  
Jin Wang
Keyword(s):  

2009 ◽  
Vol 46 (11) ◽  
pp. 837-848 ◽  
Author(s):  
Claudia B. Monteiro-Vitorello ◽  
Georg Hausner ◽  
Denise B. Searles ◽  
Ewan A. Gibb ◽  
Dennis W. Fulbright ◽  
...  

Author(s):  
Peramachi Palanivelu

Aim: To analyze different HNH endonucleases from various sources including the HNH endonuclease regions of CRISPR-Cas9 proteins for their conserved motifs, metal-binding sites and catalytic amino acids and propose a plausible mechanism of action for HNH endonucleases, using CRISPR-Cas9 as the model enzyme. Study Design: Multiple sequence analysis (MSA) of homing endonucleases including the CRISPR-Cas9 using Clustal Omega was studied. Other biochemical, Site-directed mutagenesis (SDM) and X-ray crystallographic data were also analyzed. Place and Duration of Study: School of Biotechnology, Madurai Kamaraj University, Madurai, India, between 2007 and 2013. Methodology: Bioinformatics, Biochemical, SDM and X-ray crystallographic data of the HNH endonucleases from different organisms including CRISPR-Cas9 enzymes were analyzed. The advanced version of Clustal Omega was used for protein sequence analysis of different HNH endonucleases from various sources. The conserved motifs identified by the bioinformatics analysis were analyzed further with the data already available from biochemical and SDM and X-ray crystallographic analyses of this group of enzymes and to confirm the possible amino acids involved in the active sites and catalysis. Results: Different types of homing endonucleases from various sources including the HNH endonuclease regions of CRISPR-Cas9 enzymes exhibit different catalytic regions and metal-binding sites. However, the catalytic amino acid, i.e., the proton acceptor histidine (His), is completely conserved in all homing endonucleases analyzed. From these data, a plausible mechanism of action for HNH endonucleases, using CRISPR-Cas9 from Streptococcus pyogenes, as the model enzyme is proposed. Furthermore, multiple sequence alignment (MSA) of various homing endonucleases from different organisms showed many highly conserved motifs also among them. However, some of the HNH endonucleases showed consensus only around the active site regions. Possible catalytic amino acids identified among them belong to either -DH---N or -HH--N types. There are at least two types of metal-binding sites and bind Mg2+ or Zn2+ or both. The CRISPR-Cas9 enzyme from S. pyogenes belongs to the -DH- based HNH endonucleases and possesses –DxD- type metal-binding site where it possibly binds to a Mg2+ ion. The other HNH enzymes possess one or two invariant Zn binding CxxC/ CxxxC motifs. Conclusions: The CRISPR-Cas9 enzymes are found to be -DH- type where the first D is likely to involve in metal-binding and the second invariant H acts as the proton acceptor and the N in –HNH- Cas9 confers specificity by interacting with the nucleotide near the catalytic region. In this communication, a metal-bound water molecule is shown as the nucleophile initiating catalysis. Homing endonucleases may be used as novel DNA binding and cleaving reagents for a variety of genome editing applications and Zinc finger nucleases have already found applications in genome editing.


2021 ◽  
Author(s):  
Abby M. Korn ◽  
Andrew E. Hillhouse ◽  
Lichang Sun ◽  
Jason J. Gill

The majority of previously described Staphylococcus aureus bacteriophages belong to three major groups: P68-like podophages, Twort-like or K-like myophages, and a more diverse group of temperate siphophages. Here we present three novel S. aureus “jumbo” phages: MarsHill, Madawaska, and Machias. These phages were isolated from swine production environments in the United States and represent a novel clade of S. aureus myophage. The average genome size for these phages is ∼269 kb with each genome encoding ∼263 predicted protein-coding genes. Phage genome organization and content is similar to known jumbo phages of Bacillus , including AR9 and vB_BpuM-BpSp. All three phages possess genes encoding complete virion and non-virion RNA polymerases, multiple homing endonucleases, and a retron-like reverse transcriptase. Like AR9, all of these phages are presumed to have uracil-substituted DNA which interferes with DNA sequencing. These phages are also able to transduce host plasmids, which is significant as these phages were found circulating in swine production environments and can also infect human S. aureus isolates. Importance of work: This study describes the comparative genomics of three novel S. aureus jumbo phages: MarsHill, Madawaska, and Machias. These three S. aureus myophages represent an emerging class of S. aureus phage. These genomes contain abundant introns which show a pattern consistent with repeated acquisition rather than vertical inheritance, suggesting intron acquisition and loss is an active process in the evolution of these phages. These phages have presumably hypermodified DNA which inhibits sequencing by several different common platforms. Therefore, these phages also represent potential genomic diversity that has been missed due to the limitations of standard sequencing techniques. In particular, such hypermodified genomes may be missed by metagenomic studies due to their resistance to standard sequencing techniques. Phage MarsHill was found to be able to transduce host DNA at levels comparable to that found for other transducing S. aureus phages, making them a potential vector for horizontal gene transfer in the environment.


2007 ◽  
Vol 35 (8) ◽  
pp. 2748-2758 ◽  
Author(s):  
Petra Volná ◽  
Jordan Jarjour ◽  
Sarah Baxter ◽  
Steve R. Roffler ◽  
Raymond J. Monnat ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document