homing endonucleases
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 28)

H-INDEX

27
(FIVE YEARS 2)

Viruses ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 6
Author(s):  
Olga Pacios ◽  
Laura Fernández-García ◽  
Inés Bleriot ◽  
Lucia Blasco ◽  
Antón Ambroa ◽  
...  

Klebsiella pneumoniae is a human pathogen that worsens the prognosis of many immunocompromised patients. Here, we annotated and compared the genomes of two lytic phages that infect clinical strains of K. pneumoniae (vB_KpnM-VAC13 and vB_KpnM-VAC66) and phenotypically characterized vB_KpnM-VAC66 (time of adsorption of 12 min, burst size of 31.49 ± 0.61 PFU/infected cell, and a host range of 20.8% of the tested strains). Transmission electronic microscopy showed that vB_KpnM-VAC66 belongs to the Myoviridae family. The genomic analysis of the phage vB_KpnM-VAC66 revealed that its genome encoded 289 proteins. When compared to the genome of vB_KpnM-VAC13, they showed a nucleotide similarity of 97.56%, with a 93% of query cover, and the phylogenetic study performed with other Tevenvirinae phages showed a close common ancestor. However, there were 21 coding sequences which differed. Interestingly, the main differences were that vB_KpnM-VAC66 encoded 10 more homing endonucleases than vB_KpnM-VAC13, and that the nucleotidic and amino-acid sequences of the L-shaped tail fiber protein were highly dissimilar, leading to different three-dimensional protein predictions. Both phages differed significantly in their host range. These viruses may be useful in the development of alternative therapies to antibiotics or as a co-therapy increasing its antimicrobial potential, especially when addressing multidrug resistant (MDR) pathogens.


2021 ◽  
Vol 14 (11) ◽  
pp. 1171
Author(s):  
Sahar Serajian ◽  
Ehsan Ahmadpour ◽  
Sonia M. Rodrigues Oliveira ◽  
Maria de Lourdes Pereira ◽  
Siamak Heidarzadeh

Through the years, many promising tools for gene editing have been developed including zinc-finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), CRISPR-associated protein 9 (Cas9), and homing endonucleases (HEs). These novel technologies are now leading new scientific advancements and practical applications at an inimitable speed. While most work has been performed in eukaryotes, CRISPR systems also enable tools to understand and engineer bacteria. The increase in the number of multi-drug resistant strains highlights a necessity for more innovative approaches to the diagnosis and treatment of infections. CRISPR has given scientists a glimmer of hope in this area that can provide a novel tool to fight against antimicrobial resistance. This system can provide useful information about the functions of genes and aid us to find potential targets for antimicrobials. This paper discusses the emerging use of CRISPR-Cas systems in the fields of clinical microbiology and infectious diseases with a particular emphasis on future prospects.


2021 ◽  
Vol 22 (18) ◽  
pp. 9872
Author(s):  
Chin-Kai Chuang ◽  
Wei-Ming Lin

Theoretically, a DNA sequence-specific recognition protein that can distinguish a DNA sequence equal to or more than 16 bp could be unique to mammalian genomes. Long-sequence-specific nucleases, such as naturally occurring Homing Endonucleases and artificially engineered ZFN, TALEN, and Cas9-sgRNA, have been developed and widely applied in genome editing. In contrast to other counterparts, which recognize DNA target sites by the protein moieties themselves, Cas9 uses a single-guide RNA (sgRNA) as a template for DNA target recognition. Due to the simplicity in designing and synthesizing a sgRNA for a target site, Cas9-sgRNA has become the most current tool for genome editing. Moreover, the RNA-guided DNA recognition activity of Cas9-sgRNA is independent of both of the nuclease activities of it on the complementary strand by the HNH domain and the non-complementary strand by the RuvC domain, and HNH nuclease activity null mutant (H840A) and RuvC nuclease activity null mutant (D10A) were identified. In accompaniment with the sgRNA, Cas9, Cas9(D10A), Cas9(H840A), and Cas9(D10A, H840A) can be used to achieve double strand breakage, complementary strand breakage, non-complementary strand breakage, and no breakage on-target site, respectively. Based on such unique characteristics, many engineered enzyme activities, such as DNA methylation, histone methylation, histone acetylation, cytidine deamination, adenine deamination, and primer-directed mutation, could be introduced within or around the target site. In order to prevent off-targeting by the lasting expression of Cas9 derivatives, a lot of transient expression methods, including the direct delivery of Cas9-sgRNA riboprotein, were developed. The issue of biosafety is indispensable in in vivo applications; Cas9-sgRNA packaged into virus-like particles or extracellular vesicles have been designed and some in vivo therapeutic trials have been reported.


2021 ◽  
Vol 12 ◽  
Author(s):  
Joanna Wyrębek ◽  
Tomasz Molcan ◽  
Kamil Myszczyński ◽  
Anne D. van Diepeningen ◽  
Alexander A. Stakheev ◽  
...  

Fungal complexes are often composed of morphologically nearly indistinguishable species with high genetic similarity. However, despite their close relationship, they can exhibit distinct phenotypic differences in pathogenicity and production of mycotoxins. Many plant pathogenic and toxigenic fungi have been shown to consist of such cryptic species. Identification of cryptic species in economically important pathogens has added value in epidemiologic studies and provides opportunities for better control. Analysis of mitochondrial genomes or mitogenomics opens up dimensions for improved diagnostics of fungi, especially when efficient recovery of DNA is problematic. In comparison to nuclear DNA, mitochondrial DNA (mtDNA) can be amplified with improved efficacy due to its multi-copy nature. However, to date, only a few studies have demonstrated the usefulness of mtDNA for identification of cryptic species within fungal complexes. In this study, we explored the value of mtDNA for identification of one of the most important cereal pathogens Fusarium graminearum sensu stricto (F.g.). We found that homing endonucleases (HEGs), which are widely distributed in mitogenomes of fungi, display small indel polymorphism, proven to be potentially species specific. The resulting small differences in their lengths may facilitate further differentiation of F.g. from the other cryptic species belonging to F. graminearum species complex. We also explored the value of SNP analysis of the mitogenome for typing F.g. The success in identifying F.g. strains was estimated at 96%, making this tool an attractive complement to other techniques for identification of F.g.


Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2001
Author(s):  
Jigeesha Mukhopadhyay ◽  
Georg Hausner

Introns are ubiquitous in eukaryotic genomes and have long been considered as ‘junk RNA’ but the huge energy expenditure in their transcription, removal, and degradation indicate that they may have functional significance and can offer evolutionary advantages. In fungi, plants and algae introns make a significant contribution to the size of the organellar genomes. Organellar introns are classified as catalytic self-splicing introns that can be categorized as either Group I or Group II introns. There are some biases, with Group I introns being more frequently encountered in fungal mitochondrial genomes, whereas among plants Group II introns dominate within the mitochondrial and chloroplast genomes. Organellar introns can encode a variety of proteins, such as maturases, homing endonucleases, reverse transcriptases, and, in some cases, ribosomal proteins, along with other novel open reading frames. Although organellar introns are viewed to be ribozymes, they do interact with various intron- or nuclear genome-encoded protein factors that assist in the intron RNA to fold into competent splicing structures, or facilitate the turn-over of intron RNAs to prevent reverse splicing. Organellar introns are also known to be involved in non-canonical splicing, such as backsplicing and trans-splicing which can result in novel splicing products or, in some instances, compensate for the fragmentation of genes by recombination events. In organellar genomes, Group I and II introns may exist in nested intronic arrangements, such as introns within introns, referred to as twintrons, where splicing of the external intron may be dependent on splicing of the internal intron. These nested or complex introns, with two or three-component intron modules, are being explored as platforms for alternative splicing and their possible function as molecular switches for modulating gene expression which could be potentially applied towards heterologous gene expression. This review explores recent findings on organellar Group I and II introns, focusing on splicing and mobility mechanisms aided by associated intron/nuclear encoded proteins and their potential roles in organellar gene expression and cross talk between nuclear and organellar genomes. Potential application for these types of elements in biotechnology are also discussed.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11950
Author(s):  
Jason W. Shapiro ◽  
Catherine Putonti

Background A pangenome is the collection of all genes found in a set of related genomes. For microbes, these genomes are often different strains of the same species, and the pangenome offers a means to compare gene content variation with differences in phenotypes, ecology, and phylogenetic relatedness. Though most frequently applied to bacteria, there is growing interest in adapting pangenome analysis to bacteriophages. However, working with phage genomes presents new challenges. First, most phage families are under-sampled, and homologous genes in related viruses can be difficult to identify. Second, homing endonucleases and intron-like sequences may be present, resulting in fragmented gene calls. Each of these issues can reduce the accuracy of standard pangenome analysis tools. Methods We developed an R pipeline called Rephine.r that takes as input the gene clusters produced by an initial pangenomics workflow. Rephine.r then proceeds in two primary steps. First, it identifies three common causes of fragmented gene calls: (1) indels creating early stop codons and new start codons; (2) interruption by a selfish genetic element; and (3) splitting at the ends of the reported genome. Fragmented genes are then fused to create new sequence alignments. In tandem, Rephine.r searches for distant homologs separated into different gene families using Hidden Markov Models. Significant hits are used to merge families into larger clusters. A final round of fragment identification is then run, and results may be used to infer single-copy core genomes and phylogenetic trees. Results We applied Rephine.r to three well-studied phage groups: the Tevenvirinae (e.g., T4), the Studiervirinae (e.g., T7), and the Pbunaviruses (e.g., PB1). In each case, Rephine.r recovered additional members of the single-copy core genome and increased the overall bootstrap support of the phylogeny. The Rephine.r pipeline is provided through GitHub (https://www.github.com/coevoeco/Rephine.r) as a single script for automated analysis and with utility functions to assist in building single-copy core genomes and predicting the sources of fragmented genes.


2021 ◽  
Author(s):  
Abby M. Korn ◽  
Andrew E. Hillhouse ◽  
Lichang Sun ◽  
Jason J. Gill

The majority of previously described Staphylococcus aureus bacteriophages belong to three major groups: P68-like podophages, Twort-like or K-like myophages, and a more diverse group of temperate siphophages. Here we present three novel S. aureus “jumbo” phages: MarsHill, Madawaska, and Machias. These phages were isolated from swine production environments in the United States and represent a novel clade of S. aureus myophage. The average genome size for these phages is ∼269 kb with each genome encoding ∼263 predicted protein-coding genes. Phage genome organization and content is similar to known jumbo phages of Bacillus , including AR9 and vB_BpuM-BpSp. All three phages possess genes encoding complete virion and non-virion RNA polymerases, multiple homing endonucleases, and a retron-like reverse transcriptase. Like AR9, all of these phages are presumed to have uracil-substituted DNA which interferes with DNA sequencing. These phages are also able to transduce host plasmids, which is significant as these phages were found circulating in swine production environments and can also infect human S. aureus isolates. Importance of work: This study describes the comparative genomics of three novel S. aureus jumbo phages: MarsHill, Madawaska, and Machias. These three S. aureus myophages represent an emerging class of S. aureus phage. These genomes contain abundant introns which show a pattern consistent with repeated acquisition rather than vertical inheritance, suggesting intron acquisition and loss is an active process in the evolution of these phages. These phages have presumably hypermodified DNA which inhibits sequencing by several different common platforms. Therefore, these phages also represent potential genomic diversity that has been missed due to the limitations of standard sequencing techniques. In particular, such hypermodified genomes may be missed by metagenomic studies due to their resistance to standard sequencing techniques. Phage MarsHill was found to be able to transduce host DNA at levels comparable to that found for other transducing S. aureus phages, making them a potential vector for horizontal gene transfer in the environment.


2021 ◽  
Vol 12 ◽  
Author(s):  
Gozde Yildiz ◽  
Hilal Ozkilinc

Monilinia fructicola and Monilinia laxa species are the most destructive and economically devastating fungal plant pathogens causing brown rot disease on stone and pome fruits worldwide. Mitochondrial genomes (mitogenomes) play critical roles influencing the mechanisms and directions of the evolution of fungal pathogens. The pan-mitogenomics approach predicts core and accessory regions of the mitochondrial genomes and explains the gain or loss of variation within and between species. The present study is a fungal pan-mitogenome of M. fructicola (N = 8) and M. laxa (N = 8) species. The completely sequenced and annotated mitogenomes showed high variability in size within and between the species. The mitogenomes of M. laxa were larger, ranging from 178,351 to 179,780bp, than the mitogenomes of M. fructicola, ranging from 158,607 to 167,838bp. However, size variation within the species showed that M. fructicola isolates were more variable in the size range than M. laxa isolates. All the mitogenomes included conserved mitochondrial genes, as well as variable regions including different mobile introns encoding homing endonucleases or maturase, non-coding introns, and repetitive elements. The linear model analysis supported the hypothesis that the mitogenome size expansion is due to presence of variable (accessory) regions. Gene synteny was mostly conserved among all samples, with the exception for order of the rps3 in the mitogenome of one isolate. The mitogenomes presented AT richness; however, A/T and G/C skew varied among the mitochondrial genes. The purifying selection was detected in almost all the protein-coding genes (PCGs) between the species. However, cytochrome b was the only gene showing a positive selection signal among the total samples. Combined datasets of amino acid sequences of 14 core mitochondrial PCGs and rps3 obtained from this study together with published mitochondrial genome sequences from some other species from Heliotales were used to infer a maximum likelihood (ML) phylogenetic tree. ML tree indicated that both Monilinia species highly diverged from each other as well as some other fungal species from the same order. Mitogenomes harbor much information about the evolution of fungal plant pathogens, which could be useful to predict pathogenic life strategies.


2021 ◽  
Author(s):  
Jason W. Shapiro ◽  
Catherine Putonti

AbstractBackgroundA pangenome is the collection of all genes found in a set of related genomes. For microbes, these genomes are often different strains of the same species, and the pangenome offers a means to compare gene content variation with differences in phenotypes, ecology, and phylogenetic relatedness. Though most frequently applied to bacteria, there is growing interest in adapting pangenome analysis to bacteriophages. However, working with phage genomes presents new challenges. First, most phage families are under-sampled, and homologous genes in related viruses can be difficult to identify. Second, homing endonucleases and intron-like sequences may be present, resulting in fragmented gene calls. Each of these issues can reduce the accuracy of standard pangenome analysis tools.MethodsWe developed an R pipeline called Rephine.r that takes as input the gene clusters produced by an initial pangenomics workflow. Rephine.r then proceeds in two primary steps. First, it identifies three common causes of fragmented gene calls: 1) indels creating early stop codons and new start codons; 2) interruption by a selfish genetic element; and 3) splitting at the ends of the reported genome. Fragmented genes are then fused to create new sequence alignments. In tandem, Rephine.r searches for distant homologs separated into different gene families using Hidden Markov Models. Significant hits are used to merge families into larger clusters. A final round of fragment identification is then run, and results may be used to infer single-copy core genomes and phylogenetic trees.ResultsWe applied Rephine.r to three well-studied phage groups: the Tevenvirinae (e.g. T4), the Studiervirinae (e.g. T7), and the Pbunaviruses (e.g. PB1). In each case, Rephine.r recovered additional members of the single-copy core genome and increased the overall bootstrap support of the phylogeny. The Rephine.r pipeline is provided through GitHub (https://www.github.com/coevoeco/Rephine.r) as a single script for automated analysis and with utility functions and a walkthrough for researchers with specific use cases for each type of correction.


Author(s):  
Marcus de Melo Teixeira ◽  
B Franz Lang ◽  
Daniel R Matute ◽  
Jason E Stajich ◽  
Bridget Barker

Abstract Fungal mitochondrial genomes encode genes involved in crucial cellular processes, such as oxidative phosphorylation and mitochondrial translation, and the molecule has been used as a molecular marker for population genetics studies. Coccidioides immitis and C. posadasii are endemic fungal pathogens that cause coccidioidomycosis in arid regions across both American continents. To date, approximately 150 Coccidioides isolates have been sequenced to infer patterns of variation of nuclear genomes. However, less attention has been given to the mitochondrial genomes of Coccidioides. In this report, we describe the assembly and annotation of mitochondrial reference genomes for two representative strains of C. posadasii and C. immitis, as well as assess population variation among 77 selected genomes. The sizes of the circular-mapping molecules are 68.2 Kb in C. immitis and 75.1 Kb in C. posadasii. We identify fourteen mitochondrial protein-coding genes common to most fungal mitochondria, which are largely syntenic across different populations and species of Coccidioides. Both Coccidioides species are characterized by a large number of group I and II introns, harboring twice the number of elements as compared to closely related Onygenales. The introns contain complete or truncated ORFs with high similarity to homing endonucleases of the LAGLIDADG and GIY-YIG families. Phylogenetic comparisons of mitochondrial and nuclear genomes show extensive phylogenetic discordance suggesting that the evolution of the two types of genetic material is not identical. This work represents the first assessment of mitochondrial genomes among isolates of both species of Coccidioides, and provides a foundation for future functional work.


Sign in / Sign up

Export Citation Format

Share Document