vertical inheritance
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 16)

H-INDEX

13
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Mark Achtman ◽  
Zhemin Zhou ◽  
Jane Charlesworth ◽  
Laura A. Baxter

The definition of bacterial species is traditionally a taxonomic issue while defining bacterial populations is done with population genetics. These assignments are species specific, and depend on the practitioner. Legacy multilocus sequence typing is commonly used to identify sequence types (STs) and clusters (ST Complexes). However, these approaches are not adequate for the millions of genomic sequences from bacterial pathogens that have been generated since 2012. EnteroBase (http://enterobase.warwick.ac.uk) automatically clusters core genome MLST alleles into hierarchical clusters (HierCC) after assembling annotated draft genomes from short read sequences. HierCC clusters span core sequence diversity from the species level down to individual transmission chains. Here we evaluate the ability of HierCC to correctly assign 100,000s of genomes to the species/subspecies and population levels for Salmonella, Clostridoides, Yersinia, Vibrio and Streptococcus. HierCC assignments were more consistent with maximum-likelihood super-trees of core SNPs or presence/absence of accessory genes than classical taxonomic assignments or 95% ANI. However, neither HierCC nor ANI were uniformly consistent with classical taxonomy of Streptococcus. HierCC was also consistent with legacy eBGs/ST Complexes in Salmonella or Escherichia and revealed differences in vertical inheritance of O serogroups. Thus, EnteroBase HierCC supports the automated identification of and assignment to species/subspecies and populations for multiple genera.


2021 ◽  
Vol 10 (1) ◽  
pp. 9
Author(s):  
Leandro Gammuto ◽  
Carolina Chiellini ◽  
Marta Iozzo ◽  
Renato Fani ◽  
Giulio Petroni

Azurin is a bacterial-derived cupredoxin, which is mainly involved in electron transport reactions. Interest in azurin protein has risen in recent years due to its anticancer activity and its possible applications in anticancer therapies. Nevertheless, the attention of the scientific community only focused on the azurin protein found in Pseudomonas aeruginosa (Proteobacteria, Gammaproteobacteria). In this work, we performed the first comprehensive screening of all the bacterial genomes available in online repositories to assess azurin distribution in the three domains of life. The Azurin coding gene was not detected in the domains Archaea and Eucarya, whereas it was detected in phyla other than Proteobacteria, such as Bacteroidetes, Verrucomicrobia and Chloroflexi, and a phylogenetic analysis of the retrieved sequences was performed. Observed patchy distribution and phylogenetic data suggest that once it appeared in the bacterial domain, the azurin coding gene was lost in several bacterial phyla and/or anciently horizontally transferred between different phyla, even though a vertical inheritance appeared to be the major force driving the transmission of this gene. Interestingly, a shared conserved domain has been found among azurin members of all the investigated phyla. This domain is already known in P. aeruginosa as p28 domain and its importance for azurin anticancer activity has been widely explored. These findings may open a new and intriguing perspective in deciphering the azurin anticancer mechanisms and to develop new tools for treating cancer diseases.


mBio ◽  
2021 ◽  
Author(s):  
Alexander B. Chase ◽  
Douglas Sweeney ◽  
Mitchell N. Muskat ◽  
Dulce G. Guillén-Matus ◽  
Paul R. Jensen

Microbial natural products are traditionally exploited for their pharmaceutical potential, yet our understanding of the evolutionary processes driving BGC evolution and compound diversification remains poorly developed. While HGT is recognized as an integral driver of BGC distributions, we find that the effects of vertical inheritance on BGC diversification had direct implications for species-level specialized metabolite production.


2021 ◽  
Author(s):  
Devani Romero Picazo ◽  
Almut Werner ◽  
Tal Dagan ◽  
Anne Kupczok

Microbial pangenomes vary across species; their size and structure are determined by genetic diversity within the population and by gene loss and horizontal gene transfer (HGT). Many bacteria are associated with eukaryotic hosts where the host colonization dynamics may impact bacterial genome evolution. Host-associated lifestyle has been recognized as a barrier to HGT in parentally transmitted bacteria. However, pangenome evolution of environmentally acquired symbionts remains understudied, often due to limitations in symbiont cultivation. Using high-resolution metagenomics, here we study pangenome evolution of two co-occurring endosymbiont populations inhabiting individual Bathymodiolus brooksi mussels from a single cold seep. The symbionts, sulfur-oxidizing (SOX) and methane-oxidizing (MOX) gamma-proteobacteria, are environmentally acquired at an early developmental stage and individual mussels may harbor multiple strains of each species. We found differences in the accessory gene content of both symbionts across individual mussels, which are reflected by differences in symbiont strain composition. Compared to core genes, accessory genes are enriched in functions involved in genome integrity maintenance. We found no evidence for recent horizontal gene transfer between both symbionts. A comparison between the symbiont pangenomes revealed that the MOX population is less diverged and contains fewer accessory genes, supporting the view that the MOX association with B. brooksi is more recent than that of SOX. Our results show that the pangenomes of both symbionts evolved mainly by vertical inheritance. We conclude that association with individual hosts over their lifetime leads to genetically isolated symbiont subpopulations, constraining the frequency of HGT in the evolution of environmentally transmitted symbionts.


2021 ◽  
Vol 9 (9) ◽  
pp. 1978
Author(s):  
Tom G. Schwan ◽  
Sandra J. Raffel

Transovarial passage of relapsing fever spirochetes (Borrelia species) by infected female argasid ticks to their progeny is a widespread phenomenon. Yet this form of vertical inheritance has been considered rare for the North American tick Ornithodoros hermsi infected with Borrelia hermsii. A laboratory colony of O. hermsi was established from a single infected female and two infected males that produced a population of ticks with a high prevalence of transovarial transmission based on infection assays of single and pooled ticks feeding on mice and immunofluorescence microscopy of eggs and larvae. Thirty-eight of forty-five (84.4%) larval cohorts (groups of larvae originating from the same egg clutch) transmitted B. hermsii to mice over four and a half years, and one hundred and three single and one hundred and fifty-three pooled nymphal and adult ticks transmitted spirochetes during two hundred and fourteen of two hundred and fifty-six (83.6%) feedings on mice over seven and a half years. The perpetuation of B. hermsii for many years by infected ticks only (without acquisition of spirochetes from vertebrate hosts) demonstrates the reservoir competence of O. hermsi. B. hermsii produced the variable tick protein in eggs and unfed larvae infected by transovarial transmission, leading to speculation of the possible steps in the evolution of borreliae from a tick-borne symbiont to a tick-transmitted parasite of vertebrates.


2021 ◽  
Vol 9 (9) ◽  
pp. 1860
Author(s):  
Qiuyu Ma ◽  
Yonghong Cui ◽  
Xu Chu ◽  
Guoqiang Li ◽  
Meijiao Yang ◽  
...  

The gut microbiota of insects has a wide range of effects on host nutrition, physiology, and behavior. The structure of gut microbiota may also be shaped by their environment, causing them to adjust to their hosts; thus, the objective of this study was to examine variations in the morphological traits and gut microbiota of Lymantria xylina in response to natural and artificial diets using high-throughput sequencing. Regarding morphology, the head widths for larvae fed on a sterilized artificial diet were smaller than for larvae fed on a non-sterilized host-plant diet in the early instars. The gut microbiota diversity of L. xylina fed on different diets varied significantly, but did not change during different development periods. This seemed to indicate that vertical inheritance occurred in L. xylina mutualistic symbionts. Acinetobacter and Enterococcus were dominant in/on eggs. In the first instar larvae, Acinetobacter accounted for 33.52% of the sterilized artificial diet treatment, while Enterococcus (67.88%) was the predominant bacteria for the non-sterilized host-plant diet treatment. Gut microbe structures were adapted to both diets through vertical inheritance and self-regulation. This study clarified the impacts of microbial symbiosis on L. xylina and might provide new possibilities for improving the control of these bacteria.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0241093
Author(s):  
Sandesh Acharya ◽  
Amol Dahal ◽  
Hitesh Kumar Bhattarai

The replication of DNA is an essential process in all domains of life. A protein often involved in replication is the sliding clamp. The sliding clamp encircles the DNA and helps replicative polymerase stay attached to the replication machinery increasing the processivity of the polymerase. In eukaryotes and archaea, the sliding clamp is called the Proliferating Cell Nuclear Antigen (PCNA) and consists of two domains. This PCNA forms a trimer encircling the DNA as a hexamer. In bacteria, the structure of the sliding clamp is highly conserved, but the protein itself, called beta clamp, contains three domains, which dimerize to form a hexamer. The bulk of literature touts a conservation of the structure of the sliding clamp, but fails to recognize the conservation of protein sequence among sliding clamps. In this paper, we have used PSI blast to the second iteration in NCBI to show a statistically significant sequence homology between Pyrococcus furiosus PCNA and Kallipyga gabonensis beta clamp. The last two domains of beta clamp align with the two domains of PCNA. This homology data demonstrates that PCNA and beta clamp arose from a common ancestor. In this paper, we have further used beta clamp and PCNA sequences from diverse bacteria, archaea and eukarya to build maximum likelihood phylogenetic tree. Most, but not all, species in different domains of life harbor one sliding clamp from vertical inheritance. Some of these species that have two or more sliding clamps have acquired them from gene duplication or horizontal gene transfer events.


2021 ◽  
Author(s):  
Abby M. Korn ◽  
Andrew E. Hillhouse ◽  
Lichang Sun ◽  
Jason J. Gill

The majority of previously described Staphylococcus aureus bacteriophages belong to three major groups: P68-like podophages, Twort-like or K-like myophages, and a more diverse group of temperate siphophages. Here we present three novel S. aureus “jumbo” phages: MarsHill, Madawaska, and Machias. These phages were isolated from swine production environments in the United States and represent a novel clade of S. aureus myophage. The average genome size for these phages is ∼269 kb with each genome encoding ∼263 predicted protein-coding genes. Phage genome organization and content is similar to known jumbo phages of Bacillus , including AR9 and vB_BpuM-BpSp. All three phages possess genes encoding complete virion and non-virion RNA polymerases, multiple homing endonucleases, and a retron-like reverse transcriptase. Like AR9, all of these phages are presumed to have uracil-substituted DNA which interferes with DNA sequencing. These phages are also able to transduce host plasmids, which is significant as these phages were found circulating in swine production environments and can also infect human S. aureus isolates. Importance of work: This study describes the comparative genomics of three novel S. aureus jumbo phages: MarsHill, Madawaska, and Machias. These three S. aureus myophages represent an emerging class of S. aureus phage. These genomes contain abundant introns which show a pattern consistent with repeated acquisition rather than vertical inheritance, suggesting intron acquisition and loss is an active process in the evolution of these phages. These phages have presumably hypermodified DNA which inhibits sequencing by several different common platforms. Therefore, these phages also represent potential genomic diversity that has been missed due to the limitations of standard sequencing techniques. In particular, such hypermodified genomes may be missed by metagenomic studies due to their resistance to standard sequencing techniques. Phage MarsHill was found to be able to transduce host DNA at levels comparable to that found for other transducing S. aureus phages, making them a potential vector for horizontal gene transfer in the environment.


Author(s):  
Warren Francis

Steroid and hopanoid biomarkers can be found in ancient rocks and may give a glimpse of what life was present at that time. Sterols and hopanoids are produced by two related enzymes, though the evolutionary history of this protein family is complicated by losses and horizontal gene transfers, and appears to be widely misinterpretted. Here, I have added sequences from additional key species, and re-analysis of the phylogeny of SHC and OSC indicates a single origin of both enzymes among eukaryotes. This pattern is best explained by vertical inheritance of both enzymes from a bacterial ancestor, followed by widespread loss of SHC, and two subsequent HGT events to ferns and ascomycetes. Thus, the last common ancestor of eukaryotes would have been bifunctional for both sterol and hopanoid production. Later enzymatic innovations allowed diversification of sterols in eukaryotes. Contrary to previous interpretations, the LCA of eukaryotes potentially would have been able to produce hopanoids as a substitute for sterols in anaerobic conditions. Without invoking any other metabolic demand, the LCA of eukaryotes could have been a facultative aerobe, living in unstable conditions with respect to oxygen level.


Author(s):  
Małgorzata Orłowska ◽  
Kamil Steczkiewicz ◽  
Anna Muszewska

AbstractCobalamin is a cofactor present in essential metabolic pathways in animals and one of the water-soluble vitamins. It is a complex compound synthesized solely by prokaryotes. Cobalamin dependence is scattered across the tree of life. In particular, fungi and plants were deemed devoid of cobalamin. We demonstrate that cobalamin is utilized by all fungal lineages, except for Dikarya. This observation is supported by the genomic presence of both B12 dependent enzymes and cobalamin modifying enzymes. Moreover, the genes identified are actively transcribed in many taxa. Most fungal cobalamin dependent enzymes and cobalamin metabolism proteins are highly similar to their animal homologs. Phylogenetic analyses support a scenario of vertical inheritance of the cobalamin trait with several losses. Cobalamin usage was probably lost in Mucorinae and at the base of Dikarya which groups most of the model organisms which hindered B12-dependent metabolism discovery in fungi. Our results indicate that cobalamin dependence was a widely distributed trait at least in Opisthokonta, across diverse microbial eukaryotes and likely in the LECA.


Sign in / Sign up

Export Citation Format

Share Document