Aspects of fatigue damage accumulation at elevated temperatures

1963 ◽  
Vol 11 (7) ◽  
pp. 753-758 ◽  
Author(s):  
A.M Freudenthal
Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1030 ◽  
Author(s):  
Jarosław Szusta ◽  
Andrzej Seweryn

This article presents an approach related to the modeling of the fatigue life of constructional metal alloys working under elevated temperature conditions and in the high-amplitude load range. The article reviews the fatigue damage accumulation criteria that makes it possible to determine the number of loading cycles until damage occurs. Results of experimental tests conducted on various technical metal alloys made it possible to develop a fatigue damage accumulation model for the LCF (Low Cycle Fatigue) range. In modeling, the material’s damage state variable was defined, and the damage accumulation law was formulated incrementally so as to enable the analysis of the influence of loading history on the material’s fatigue life. In the proposed model, the increment of the damage state variable was made dependent on the increment of plastic strain, on the tensile stress value in the sample, and also on the actual value of the damage state variable. The model was verified on the basis of data obtained from experiments in the field of uniaxial and multiaxial loads. Samples made of EN AW 2024T3 aluminum alloy were used for this purpose.


2004 ◽  
Vol 46 (6) ◽  
pp. 309-313
Author(s):  
Yutaka Iino ◽  
Hideo Yano

2013 ◽  
Vol 81 (4) ◽  
Author(s):  
Son Hai Nguyen ◽  
Mike Falco ◽  
Ming Liu ◽  
David Chelidze

Estimating and tracking crack growth dynamics is essential for fatigue failure prediction. A new experimental system—coupling structural and crack growth dynamics—was used to show fatigue damage accumulation is different under chaotic (i.e., deterministic) and stochastic (i.e., random) loading, even when both excitations possess the same spectral and statistical signatures. Furthermore, the conventional rain-flow counting method considerably overestimates damage in case of chaotic forcing. Important nonlinear loading characteristics, which can explain the observed discrepancies, are identified and suggested to be included as loading parameters in new macroscopic fatigue models.


1984 ◽  
Vol 110 (11) ◽  
pp. 2585-2601 ◽  
Author(s):  
Loren D. Lutes ◽  
Miguel Corazao ◽  
Sau‐lon James Hu ◽  
James Zimmerman

Sign in / Sign up

Export Citation Format

Share Document