Application of a subtraction hybridization technique involving photoactivatable biotin and organic extraction to solution hybridization analysis of genomic DNA

1990 ◽  
Vol 186 (2) ◽  
pp. 369-373 ◽  
Author(s):  
Frederic G. Barr ◽  
Beverly S. Emanuel
Genome ◽  
1997 ◽  
Vol 40 (4) ◽  
pp. 428-432 ◽  
Author(s):  
P. Besse ◽  
C. L. McIntyre ◽  
D. M. Burner ◽  
C. G. de Almeida

The use of genomic slot blot hybridization enabled the differentiation of hybrids from selfs in Saccharum × Erianthus intergeneric crosses in which Saccharum was used as the female parent. Based on the genomic in situ hybridization technique, slot blots of DNA from the parents and the progeny were blocked with the Saccharum parent DNA and hybridized with the labelled male Erianthus genomic DNA. This technique allowed a rapid screening for hybrids and was sensitive enough to detect a 1/20 dilution of Erianthus in Saccharum DNA, which should enable the detection of most partial hybrids. The genomic slot blot hybridization technique was shown to be potentially useful for assessing crosses involving Saccharum species with either Old World Erianthus section Ripidium or North American Erianthus (= Saccharum) species. The effectiveness of the technique was assessed on 144 progeny of a Saccharum officinarum × Erianthus arundinaceus cross, revealing that 43% of the progeny were selfs. The importance of this test as a tool to support intergeneric breeding programs is discussed.Key words: slot blot, Erianthus, genomic DNA, Saccharum, sugarcane.


1983 ◽  
Vol 3 (10) ◽  
pp. 1815-1823
Author(s):  
J A Lewis ◽  
K Shimizu ◽  
D Zipser

The Chinese hamster thymidine kinase (TK) gene has been isolated from a recombinant phage library constructed with genomic DNA from mouse Ltk- cells transformed to Tk+ by transfection with Chinese hamster genomic DNA. The phage library was screened by the Benton-Davis plaque hybridization technique, using as probes, subclones of recombinant phage that were isolated from mouse Ltk+ transformants by the tRNA suppressor rescue method. The Chinese hamster TK gene is contained within 13.2 kilobases of genomic DNA in the isolate designated lambda 34S4. This gene, defined by restriction enzyme sensitivity experiments, homology studies with the chicken TK gene, and mRNA blotting experiments, may extend over 8.5 kilobases. Subclones of the lambda 34S4 isolate used as hybridization probes identified a 1,400-nucleotide polyadenylated RNA as the hamster TK mRNA. The abundance of this mRNA varies dramatically in Chinese hamster cells cultured under various growth conditions, providing direct evidence that the growth dependence of TK activity may be regulated in an important way at the level of cytoplasmic TK mRNA.


2004 ◽  
Vol 25 (14) ◽  
pp. 2193-2200 ◽  
Author(s):  
Kazuo Ozawa ◽  
Cathal J. McElgunn ◽  
Takanori Yasukochi ◽  
Yasuhiko Shibanaka

2000 ◽  
Vol 78 (6) ◽  
pp. 683-690 ◽  
Author(s):  
Elzbieta Wyroba ◽  
Birgit H Satir

Molecular probes designed for the parafusin (PFUS), the Paramecium exocytic-sensitive phospho glyco protein, gave distinct hybridization patterns in Saccharomyces cerevisiae genomic DNA when compared with different phosphoglucomutase specific probes. These include two probes identical to segments of yeast phosphoglucomutase (PGM) genes 1 and 2. Neither of the PGM probes revealed the 7.4 and 5.9 kb fragments in Bgl II-cut yeast DNA digest detected with the 1.6 kb cloned PFUS cDNA and oligonucleotide constructed to the PFUS region (insertion 3 – I-3) not found in other species. PCR amplification with PFUS-specific primers generated yeast DNA-species of the predicted molecular size which hybridized to the I-3 probe. A search of the yeast genome database produced an unassigned nucleotide sequence that showed 55% identity to parafusin gene and 37% identity to PGM2 (the major isoform of yeast phosphoglucomutase) within the amplified region.Key words: parafusin, phosphoglucomutase, yeast, hybridization, PCR.


1983 ◽  
Vol 3 (10) ◽  
pp. 1815-1823 ◽  
Author(s):  
J A Lewis ◽  
K Shimizu ◽  
D Zipser

The Chinese hamster thymidine kinase (TK) gene has been isolated from a recombinant phage library constructed with genomic DNA from mouse Ltk- cells transformed to Tk+ by transfection with Chinese hamster genomic DNA. The phage library was screened by the Benton-Davis plaque hybridization technique, using as probes, subclones of recombinant phage that were isolated from mouse Ltk+ transformants by the tRNA suppressor rescue method. The Chinese hamster TK gene is contained within 13.2 kilobases of genomic DNA in the isolate designated lambda 34S4. This gene, defined by restriction enzyme sensitivity experiments, homology studies with the chicken TK gene, and mRNA blotting experiments, may extend over 8.5 kilobases. Subclones of the lambda 34S4 isolate used as hybridization probes identified a 1,400-nucleotide polyadenylated RNA as the hamster TK mRNA. The abundance of this mRNA varies dramatically in Chinese hamster cells cultured under various growth conditions, providing direct evidence that the growth dependence of TK activity may be regulated in an important way at the level of cytoplasmic TK mRNA.


2005 ◽  
Vol 85 (3) ◽  
pp. 195-203 ◽  
Author(s):  
XULIO MASIDE ◽  
STAVROULA ASSIMACOPOULOS ◽  
BRIAN CHARLESWORTH

We have investigated at the molecular level four cases in which D. melanogaster middle repetitive DNA probes consistently hybridized to a particular band on chromosomes sampled from a D. melanogaster natural population. Two corresponded to true fixations of a roo and a Stalker element, and the others were artefacts of the in situ hybridization technique caused by the presence of genomic DNA flanking the transposable elements (TEs) in the probes. The two fixed elements are located in the β-heterochromatin (20A and 80B, respectively) and are embedded in large clusters of other elements, many of which may also be fixed. We also found evidence that this accumulation is an ongoing process. These results support the hypothesis that TEs accumulate in the non-recombining part of the genome. Their implications for the effects of TEs on determining the chromatin structure of the host genomes are discussed in the light of recent evidence for the role of TE-derived small interfering-RNAs as cis-acting determinants of heterochromatin formation.


Parasitology ◽  
1988 ◽  
Vol 97 (1) ◽  
pp. 161-176 ◽  
Author(s):  
A. K. Rishi ◽  
D. P. McManus

SUMMARYTotal DNAs, isolated from a range of taeniid cestodes (Taenia solium, T. saginata, T. pisiformis, T. crassiceps, T. hydatigena, T. ovis, T. multiceps and T. taeniaeformis), have been subjected to restriction enzyme digestion, Southern transfer and hybridization analysis using cloned fragments of the ribosomal RNA gene of Schistosoma mansoni. Substantial inter-specific genetic differences have been revealed on the basis of characteristic hybridization patterns for each of the taeniid cestode species. Furthermore, a random genomic DNA library has been constructed in the vector plasmid pAT153 using DNA extracted from a pig isolate (Indian origin) of T. solium. A panel of taeniid cestode DNAs including DNA from Echinococcus granulosus, has been used in conjunction with hybridization and restriction enzyme analysis to identify in the library a single recombinant plasmid with a T. solium-specific insert (coded pTS10) and two recombinant plasmids with T. solium inserts having selective specificities for T. solium and T. ovis (coded pTS17) and T. solium, T. saginata, T. ovis and T. multiceps (coded pTS28). These recombinant plasmids and the cloned fragments of the ribosomal RNA gene of S. mansoni have been used in restriction endonuclease, Southern transfer and hybridization analysis to detect intra-specific genetic variation in cysticerci of T. solium from India, Mexico and Zimbabwe. In addition, pTS10 and pTS17 have been used in a simple dot-blot assay to distinguish T. solium from T. saginata.


Sign in / Sign up

Export Citation Format

Share Document